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ABSTRACT

Title of Thesis: Plasma Sheath and Screening Around a Stationary

Charged Sphere and a Rapidly Moving Charged Body

Evan Harris Walker_ Doctor of Philosophy_ 1964

Thesis directed by: S. F. Singer_ Professor of Physics

The potential and charge density distributions are derived

quite generally for both a stationary charged sphere and a charged

body moving rapidly through a plasma.! Previous treatments were

restricted to cases where either the bodY's potential was small_

being at most only two or three times kT/e 3 or the body was

small compared to the Debye length (i.e. a << [kT/_e2No] _ )0

We have calculated the potential and charge density as a

function of position about a stationary charged sphere_ using both

monoenergetic and Maxwellian velocity disltributions for the ions

and electrons of the ambient plasma. ! The potential decreases with
!

distance more slowly than in the case of local thermodynamic equi-

iibrium_ the density of the ions (if the body is negative 3 electrons

if positive) is generally much smaller than given by the barometric
I

formula and varies in a compl icated way. We also calculatel: the ion

and electron voltage-current probe characteristics and the equilibrium

potential as a function of the radius of the body.t We find the Mort-

Smith and Langmuir equations for the ion current (if the body is

negative_ electrons if positive) are unsatisfactory unless the sheath

thickness is expressed as a function of the potential and radius of

the body. For a spherical body the appropriate expression for the

sheath thickness o is found to be o - 0.83 _,S½ pst where _s and Ps



are the nondimensional potential and radius for the body.

Eigenvalue solutions are obtained if the charged body neutral-

izes most of the ions and electrons that strike its surface_ i.e._

if the reflection coefficients for the surface of the body are small

Under these conditions the potential is found to vary more slowly

.2
than r for small values of the potential.

For a rapidly moving body we have developed a self-consistent

method for solving the screening problem which does not require

iterative calculations. Equations for the solution of the screen-

ing of axially symmetric bodies are derived for plasmas in which

the thermal motion of the ions can be neglected and for plasmas

with a Raxweilian velocity distribution. We have calculated the

potential and density variation in the wake_ the probe characteristics_

and the impact and electric drag characteristic curves for various

bodies. } These calculations show that there is a trough in the ion

density surrounding a highly charged body. The drag calculations

show that under certain conditions a negative drag is obtained if

the potential on the body is }arge and if the ions are neutralized

and elastically reflected at the surface of the body°
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FIGURE CAPTIONS

Fig.

Fig.

Fig.

2.1

2.2

2.3

Diagram showing the parameters involved in the motion of

a screening particle. The coordinates are fixed in the

charged body. An ion with initial velocity u and impact

parameter q is shown outside the electric field and at

the point r 3 g in the field with velocity v and pitch

angle _.

plotted against pj with pericriticai surface indicated

and showing one curve _ith secondary electrons. The

curves aj bj c 3 d_ e_ f_ and g are representative of

the family of curves that give the potential as a function

of the radius vector_ the ambient plasma being monoener-

getic. For examplej assume a body with a radius of 23
]

Debye lengths has a potential of 15 kT/e volts ( point

A in the figure); thus the potential falls off according

to curve e. The pericritical surface would occur at B at

a distance of 35 h and at a potential (energy) of 0.105 kT.

If We include the effects (see text for details) of second-

ary electrons and charge this sphere to a potential 20 kT_

then this will put us at point C so that the curve e _

represents the variation of _ vs. p. A plot of the equi-

librium potential as a function of the radius is also

given for a monenergetic Hydrogen plasma.

A plot of h*/h3 the ratio of the effective Debye length

to the actual value plotted against the nondimensionai

distance p. These curves correspond to those of Fig.

(2.2) as indicated by the letter labels_ they illustrate

V



FIg.

Fig.

Fig.

Fig.

2.6

2.T

the inadequacies of the l inearized solution.

A continuation of Fig. (2:,3) for smaller values of.p.

Plot of N+/No and N./No against p for the potential

curves a_ b_ and cj corresponding to the curves in Fig.

(2.2).

Plot of N+/No and N_/No against p for the potential curves

d_ e, f_ and g_ corre_sponding to the curves in Fig. (2.2)°

:An illustration of the dependence of the pericritical

region on the value of the exponent n. Moving from

outside in there are the four regions: Periastron with

n <_ 2_ pericritical with n > 2_ pericritical with n <_ 2_

and again periastron with n < 2. Along a typical tra-

jectory A B C D E we have;

A t the initial situation in which n < 2 and

all pitch angles cz ,, 0 to Tr/2 are allowed_

the periastron case

B: there is a transition from n < 2 to

n > 2. Here the allowed cone is still from

0 to rr/2 but is now beginning to become smaller

C: we have the pericritical case with the

allowed pitch angles from 0 to O_max_ CZmax < IT/2.

D: the transition from n > 2 to n < 2 occurs.

The allowed cone now begins to increase but

CX is still less than Tr/2.
max

E: the trajectory reaches its point of closest

approach to the origin. Here its pitch angle

is Tr/2 and the allowed cone of pitch angles will

vi



Fig.

Fig.

Fig.

Fig.

be _ - 0 to _/2. Point E marks a boundary

between the pericriticai region on the out-

side and periastron region inside.

2.8 The nondimensionai potential (-_) plotted against P3 for

screening by a plasma with a Maxweilian velocity distri-

bution at infinity. The curves are used in the same way

as those of Fig. (2.2). The labels Po = i_ Po " 2_ etc.

give the value of p where _ =-0.001_ the initial point

used in the numerical calculation of the curve. Since the

ambient plasma is Maxwellian there are different pericrit-

icai surfaces for particles of different initial energy.

Thus 3 typical pericritical surfaces have been drawn in,

We also show the equilibrium potential curve for bodies

in a hydrogen plasma and in a singly ionized oxygen plasma.

2.9 This figure is a continuation of Fig. (2.8) to smaller val-

ues of p.

2.10 _ plotted against Po " P. Some of the data of Fig. (2.8)

is presented in a different way here. The curves all

begin at the same point: _ - - O.OOl_ Po - P = O.

2.11 n+ plotted against Po - P. These curves show the vari-

ation in the ion density_ starting outside the body at

a distance Po from the center where the potential is

- - 0.001 and moving toward the surface of the body.

The curves shown here correspond to the _ VSo p plots

of Figs. (2.8) and (2.10) as indicated by the value of poo

To use these curves when _s and Ps (the values of _ and

vii



Fig.

Fig.

Fig.

2.]2

2.13

2.14

p at the surface of the body) are given, find the appro-

priate curve in Fig. (2.8) or (2.10) and then find the

corresponding curve (from the family of curves) here.

n+ - n. plotted against Po - P. These curves show the

variation in the total space charge density starting

outside the body at a distance Po from the center where

the potential is _/ = - 0.001_ and moving toward the sur-

face of the body. The use of the curves for specific

examples is the same as for Fig. (2.ll). These curves

shown here correspond to the _ vs. p plots of Figs. (2.8)

and (2.10) as indicated by the value of Po.

log (1 + T+) plotted against Po - P. These curves show

the variation in the nohdimensional ion current

to a charged body, starting at a point Po and going

toward the body. We have plotted log (1 + T+) rather

than log T+ so that the point T+ - 0 would appear. The

use of these curves for specific examples is the same

as for Fig. (2.11). The curves shown here correspond to

the _ vs. p plots of Figs. (2.8) and (2.10) as indicated

by the value of Po. An example of the use of this figure

is given in the text.

log (1 + T+) plotted against Po - P. These curves are

a continuation of the curves of FIg. (2.13) correspond-

ing to the continuation of Fig. (2.8) shown in Fig. (2.9).

The use of the curves for specific examples is the same

as for Fig. (2.13) (except that information about the

vs. p curves is obtained from Fig. (2.9) instead of

viii



Fig.

Fig.

Fig.

2.15

2.16

2.17

Fig. (2.8)).

log (I + IT+- T.I)plotted against Po - P for a hydrogen

plasma. These curves show the variation in the non-

dimensional net current to a charged body starting at a

point Po and going toward the body. We have plotted

log (i + IT+ - T.I) rather than log IT+ - T.I so that

the point T+ - T. = 0 would be in the graph. This point

corresponds to the equilibrium condition of Eq. (2,(50)

and can_ therefore_ be used with Fig. (2,8) or (2.10) to

find the equilibrium potential, The use of these curves

for specific examples is the same as for Fig. (2.11).

The curves shown here correspond to the _/ vs. p plots of

Figs. (2.8) and (2,10),

log (i + IT+ - T.I) plotted against Po - P for a hydro-

gen plasma, These curves are a continuation

of Fig, (2,15) corresponding to the continuation of

Fig. (2.8) in Fig. (2.9). The use of the curves for

specific examples is the same as for Fig. (2.15)

(except that information about the _/ vs. p curves is ob-

tained from Fig. (2.9) instead of Fig. (2.8))_.

A plot of the ion current-voltage characteristics obtained

from the screening calculations. Here ps _ the nondimen-

sional radius of the charged sphere_ appears as the

parameter in the plot of the nondimensional ion current

T+ against the nondimensional potential. In addition

T+ MSL (Mott-Smith_Langmuir ion current to a negative body_

in nondimensional form_ as given by Eq. (2.70)) is

ix



plotted for three cases: Po = 50_ O_ = 55_ Po = 5, c_ = 6_

po = I0, _= I0.

Fig. b_.l The initial parameters involved in the self-consistent

calculation of screening for a moving sphere. The figure

shows an arbitrary boundary surface on which the potential,

electric field and initial velocity of the test particles

are given. A typical test particle trajectory is shown

along with the surface of the negative body.

Fig. 4.2 A diagram showing a method for computing trajectories if

the trajectory crosses the axis of symmetry. The first

trajectory that does not intersect the surface of the

charged body reaches the point A. By symmetry we can

reflect the trajectory at the axis. A second trajectory

is calculated to the point B. The density of ions at B

given by the second trajectory calculation is added to

that of the first. The first trajectory is then calcu-

lated to point B.

Fig. 4.3a_ b A continuation of Fig. (4.2) showing two stages of the

tracing out of the density and electric fields in regions

where the test particles intersect. Extrapo]ations

of the sum of the densities for the first two particles

allow their trajectories to be calculated to B and to C,

then to be extrapolated to D and to E. A third trajectory

can then be calculated to F using the densities at D and

E obtained from the first and second trajectories.

Fig. ;4.4 The Gauss Flux Theorem can be used to determine the

conditions under which the electric field can be traced

X



FIg,

Fig.

Fig.

Fig,

Fig.

Fig.

5.1

5.2

5.3

6.1

6.2

out along the trajectories of ions. Here we have

broken a closed surface into four parts Sz_ S2_ $3_

and $4_ with components of the electric field

perpendicular to these surfaces Ez_ E2j E3_ and E4.

Here S3 and S4 are perpendicular to the equipotential

surfaces; hence E3 = E4 = O.

Diagram showing the parameters for the initial position

of the ions u is the initial velocity 3 q the impact

parameter and ro_ 9o are the polar coordinates of the

ion.

A cross section of the element of area AS. The angle

Ae2p is the angle between two of the particle trajec-

tory intersections with the equipotential surface. The

angle Cx is the angle between the velocity vector and

the radius vector$ I_ is the an91e between the radius

vector and the normal to the equipotential surface,

Diagram i11ustratin 9 the quantities used in derivin 9

an expression for Z_ (where Z_ is finite).

The addition of the thermal velocity w to the drift

velocity u. The resulting velocity vector u' lies

in a new plane of "symmetry" with respect to the origin.

Diagram showing the parameters involved in "updating"

coordinate positions of test particles. The particle

is shown at rz_ gl before and r2_ 92 after displacement.

Diagram showing the parameters used to "update" o_ from

its value at the previous (or old) position at P to

its value at the present (or new) position Q.
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig,

Fig.

Fig.

8.2

8.3

8.4

6.3 Diagram showing the relation between the coordinates of

a pair of test particles on an equipotential surface to

the angle IS. The test particles are at r1_ B1 and r2_

e_. The angle IS can be calculated in terms of these

coordinates.

6.4 Diagram showing the geometric relationship between the

coordinates p_ ej _; X_ ®_ _and 2_'_ ®'j _ ( in the

plane _ = constant).

6;.5 The expression for __ in the neighborhood of point I

can be expressed in terms of _//_.' by geometric

quantities. The figure represents a neighborhood of

point l in which a variation in _/c_® is obtained

from the expression for c%_//_.'.

6;.6 Diagram illustrating the geometric relationship

between _.'Z_(_)'and D_B.

8.1 A plot of the trajectories and equipotential surfaces

computed for a hemispheric boundary surface of radius

Po = 5 with an initial potential of _/o = - O.OOl. The

ions are assumed completely cold so that kTi/U = O

(see Eq. (5.24)). The initial angle @o of each trajec-

tory is given in radians.

As Fig, (8,1) but with Po = IO,

As Fig. (8.1) but with Po = 20.

A plot of tile equidensity surfaces computed for a hemi-

spherical boundary surface of radius Po = 5 with an

initial potential _/= - O,OOl, The ions are completely

cold so that kT./U = O (see Eq. (5.24)). An equipotential
I
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

FIg.

8.5

8.6

8.7

surface from Fig. (8.1) is also shown.

As Fig. (8._) but with Po = 10.

As Fig. (8._) but with Po = 20.

A plot of the trajectories and equipotential surfaces.

Here Po = 5 and _o = " O.OOl; the ions have a Maxwellian

velocity distribution with kT./U = O.031812. The initial
I

angle @o of each trajectory is given in radians.

8.8 As Fig. (8.7) but with Po = I0.

8.9 As Fig. (8.7) but with Po = 20.

8.10 A plot of the equidensity surfaces. Here Po = 5 and

_o = " O.OOil the ions have a Maxwell ian velocity

distribution with kT./U = 0.031812. An equipotential
I

surface from Fig. (8.7) is also shown.

8.11 As Fig. (8.10) but with Po" lO.

8.12 As Fig. (8.10) but with Po = 20.

8.13 A plot of the potential variation as a function of p for

several values of @. The data comes from Fig. (8.1).

Po = 5, kT./U = O.
I

8.]4 As Fig. (8.13) but with Po = IO.

8.15 As Fig. (8.]3) but with Po = 20.

8.16 A plot of the ion density variation as a function of p

for several values of 8. This data comes from Fig.

(8.4). Po = 5, kT./U = O.
I

8.17 As Fig. (8.16) but with po = I0.

8.18 As Fig. (8.16) but with Po = 20.

8.19 A plot of _V vs. p for several values of @. The data

comes from Fig. (8.7). Po = 5_ kT./U = 0.031812.
I
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig,

8.20

8.21

8.22

8.23

8.24

9.1

9.2

9.3

As Fig. (8.19) but with Po = I0.

As Fig. (8.19) but with Po = 20.

A plot of n+ vs. p for several values of 9. The data

comes from Fig. (8.10). Po = 5, kT./U = 0.031812.
I

As Fig. (8.22) but with Po = I0.

As Fig. (8.22) but with Po = 20.

The parameters involved in the calculation of the

currents to and the drag on a charged body moving

rapidly through a plasma.

A plot of the current-voltage characteristics for

bodies moving rapidly through a plasma. We have

2

plotted here the nondimensional quantities i+ pg

vs. -_. The geometric radius pg appears as a parameter.

The data used is drawn from a limited number of calcula-

tions in which the shape of the charged body varied so

that the curves in the lower part of the graph apply

best to somewhat prolate spheroids. The first order

correction for a Maxwellian velocity distribution of

the ambient ions has been included here; we have taken

kT /U = kT./U = 0.031812 (corresponding to a relative
e i

velocity U = 7 km/sec for a singly ionized oxygen plasma

with T = 1500°k). The curves should be only weakly

dependent upon the value of Te and T i if kT i or kT e

<<U.

Plots of OTPg2 and OT'Pg2 vs. (-_) for bodies moving

rapidly through a plasma. The geometric radius pg

appears as a parameter in both sets of curves. The

xiv



curves near the bottom of the graph apply best to

somewhat prolate spheroids. These curves include

the correction for a Maxweilian velocity distribu-

tion of the ambient ions (see Eq. (5.24))_ here

kTe/U = kT./U = 0.031812. The occurrence of nega-I

tive values of DT (for pg 2, _ _ 4.6 and pg 3j

_ 22) is discussed in the text.
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CHAPTER I

I NTRODUCT I ON

The problem of the screening of bodies at rest or moving in a

collisionless plasma is necessary for several fields of investigation

inc]udin 9 plasma physicss upper atmosphere and space research s and

gaseous discharge research. The complete solution of this problem

allows us to calculate the ion and electron currents to a probe

embedded in a plasma_ the equilibrium surface charge that a body will

acquire in the plasma; the potential and density distribution of ions

and electrons about the body s and the impact and electric field drag

that the body will experience if moving relative to the plasma.

The problem of the screening of a charged body is in many

respects similar to the problems of the neutral planetary exosphere 1

and the density of dust near the earth _s 3 except each of these prob-

lems benefits from the fact that the gravitational potential is

everywhere given_ the potential does not depend upon the density

distribution of the particles as it does in the present case.

The literature on the subject of screening and related sub-

jects is quite extensive s particularly for the case of a rapidly

moving body. However s the solutions of the basic problems are either

unsatisfactory or severely limited in their applicability. The

limitations that beset the existing calculations are:

(a) The assumption of local thermodynamic equi}ibrium. In

almost all practical screening prob]ems s under laboratory or space

conditions s the mean free path of particles is found to be large

compared with the Debye screening length. Such treatments are s
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therefore, unsatisfactory.

(b) The use of a barometric type of formula for the density

of screening particles. Although this is equivalent to the previous

assumption, it is sometimes used even though calculations are per-

formed that take account of the motions of the particles. This

result is generally obtained because of a failure to distinguish

between periastron and pericritical orbits (see Chapter II). A baro-

metric formula is applicable only if the body is small and the poten-

tial is small.

(c) The assumption that the ion density is constant since

the deflection of the ion_which are massive compared to the electrons_

is not significant. In the case of the screening of a stationary

body, there is no distinction to be made between the screening of a

positively charged body and a negatively charged body, if the ion

and electron temperatures are equal. Secondly, it must be noted that

as a particle with energy kT moves into a region where the potential

is greater than kT, it must be subjected to considerable acceleration.

It will be found that for satellite velocities, considerable de-

flections do occur.

(d) The limitation of the calculation to either small poten-

_tials or to small bodies. Since potentials on satellites may reach

values of 50 kT and since the bodies are usually many times the

{)ebye screening distance, these restrictions are of limited value.

(e) The assumption of a finite sheath° It will be shown

that the space charge region falls off much slower than previously

thought.

Let us now review a few of the more important papers on the
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subject of the screening of bodies to see the applicability and the

limitations of these works_ let us first consider the work that has

been done on the problems for stationary bodies imbedded in a plasma.

Hott-Smith and Langmuir 4 considered the problem of the current

to planej cylindrical and spherical collectors in a plasma as a

function of the potential on the bodies. The primary objection to
0

this work is the assumption of a finite screening sheath of unknown

thickness. If the body is very large compared to the thickness of the

sheath 3 or if the body is small compared to a t)ebye length and the

potential is small_ the resulting error is small. However_ the

sheath thickness increases as we 9o to larger potentials or go

to larger bodiesj so that the body is large compared to the

sheath thickness only for very large bodies. There is also

no such thing as a finite sheath and_ as we will see_ the

fall off of the potential is very slow. The results of Hott-Smith

and Langmuir are 2 therefore 3 only satisfactory for very small

bodies (compared to the Oebye screening length) having moderate

potentials.

In addition to the above difficulty with the Mott-Smith and

Langmuir expressions 3 the equations lead to an erroneous asymptotic

behavior for the current of attracted particles. In these equations

the current of positive ions to a negatively charged collector (or

electrons to a positive collector) is limited by the drift of these

particles from the ambient plasma into the sheath_ the maximum number

of particles reaching the surface of'the charged body can be no

greate_ than the number drifting to the outer surface of the sheath

no matter how negative the body becomes. This_ of course_ iS not so.
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There is no finite sheath. The field expands as the potential on

the body becomes more negative (or more positive for electrons).

The solution must be obtained by a much more detailed approach

which we will give in Chapter II.

I. B. Bernstein and I. N. Rabinowitz 5 have given a treatment

of the problem of the screening of stationary charged spheres and

infinite cylinders. Their work is severely limited by approxima-

tions employed which restrict the generality of their approach and

by assumptions which are difficult to accept.

In their preliminary analysis of the types of orbits that will

occur for various values of the angular momentum_ they assume that the

potential varies more slowly than r'2_ true only if the body is small

and the potential is not large. They justify this by an a posteriori

approach resulting in incorrect equations_ these equations are then

used to justify the original assumption. The authors next conclude

that troughs of the effective radial potential energy exist so that

ions may be injected by collisions into bound orbits which_ they

conclude_ may result in large ion densities. Therefore_ they exclude

any consideration of bodies with small radius_ thus excluding the only

region where the previous assumption might hold (assuming the poten-

tial were not too large). Actually_ even with a potential that allows

for bound orbitsj there is no satisfactory means by which particles

can be injected into these orbits. Since the potential about the

body provides a conservative field_ injection can occur only by a

process that changes the energy or angular momentum of the particle

while in the field. Since the long range collisions between the

trapped ion and the plasma particles that remove the ion is much more
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important than the short range collision that can inject the ion

into a bound orbit 3 such orbits will be very rarely occupied. The

restriction on the size of the body_ which these authors used 3 is

therefore_ unnecessary. Furthermore their analysis of the orbit types

neglects pericritical orbits_ i.e._ spiral orbits which exist when

the potential varies mor__._erapidly than r -_.

Bernstein and Rabinowitz further limit the applicability of

their work by requiring that the potential energy _(a) >_ kT where
e

a is the radius of the body_ k is Boltzmann_$ constant and T is
e

the ambient electron temperature. This restriction means that there

wi]i be no electron current to the body_ a considerable limitation.

This condition on the potential of the body is introduced to enable

the authors to ignore a formidable problem which arises if the

reflection coefficent for the charged body is zero_ one finds that

the density of attracted particles n+ < n_3 where n_ is the density

of the repelled particles_ over certain regions_ unless a more de-

tailed approach is employed (see Chapter III for further information).

Finally_ Bernstein and Rabinowitz treat only a monoenergetic

plasma and do not provide any information on the ion and electron

density distributions that they obtain from their calculations.

Let us next consider a few of the papers that have dealt with

electric screening_ drag_ and other prablems of a rapidly moving body

in a plasma.

Singer 6 in treating the problem of the motion of interplanetary

dust was the first to point out the importance of photoelectrons and

the accretion of ions and electrons in the calculation of the charge

on the dust. This author also provided the earliest calculation of
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the electrostatic drag on bodies in interplanetary spacex making use

of the orbits of the ions in the coulomb field of the body. The cal-

culation includes the effects of the relative velocity on the accre-

tion and drag. Although the complex interdependence of the screening_

drag and accretion was recognized in this paperx only approximate

results were obtained.

This work was later extended and applied 73 e to the calculation

of the lifetime of the West Ford needles. The effects of photo-

electrons was considered in greater detail by Singer and Walker 9 who

gave a self-consistent calculation of the screening and space charge

distributions produced by photoelectrons.

Jastrow and Pearse z° considered the very simple case of a

charge sheath spherically concentric about a moving charged body 3

having a uniform density. This treatment neglects the fore-aft

asymmetry in ion densityj the reduction in density due to the accel-

eration of ions near the charged body 3 the increase in density due to

focusing effects_ and the initial separation of the ion and electron

constituents,

Beard and Johnson lz have given an analysis of charging and

drag effects on satellites that includes a consideration of the

magnetic field. The effects of screening are treated differently

from Jastrow and Pearse but the treatment is equivalent; thus the

agreement between the papers is to be expected. The sheath is

taken to be thin and the potential small. The magnetic field is not

included in the calculation of the flux of either the ions or electrons

(though for large bodies the Lorentz force on the electrons will be

significant); the only magnetic field effect that is included is the
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potential gradient along the satellite perpendicular to the magnetic

field.

Beard and Johnson z2 in their paper on the "Ionospheric Limita-

tions on Attainable Satellite Potentials" base much of their calcula-

tions on the expYession for the flux of particles to the surface

of a charged body that they derive using conservation of angular

momentum_ energy_ and symmetry considerations. The calculations are

equivalent to those by Mott-Smith and Langmuirj but Beard and Johnson

do not recognize the limitations on their derivations (they obtain for

the flux (no/4) e "e_O/kT (SkT/Trm)_. This expression is correct for

t

the repelled constituent of the plasma but incorrect for the attracted

constituent. For the attracted constituent 3 the existence of peri-

critical orbits means that in general

cos g sin g de d_ _ iT (1 - 2eglo/mv 2) a_/R 2 (1.1)

(For the correct expression see the derivation of Eq. (2.19) in Chap-

II

ter II or refer to E. J. Opik's is treatise on the motion of particles

in a field of force.) This occurs because the maximum "pitch" angle

(the maximum angle between the radius vector and thevelocity vector

of a test particle) _ at any point in the pericritical region
m

satisfies the relation _ < iT/2. Thus_ although angular momentum
m

considerations allow Beard and Johnson's expression P - a (1 - 2e_o/
m

mv2)_ it is easily shown that when the potential field falls off

more rapidly than r "2 no particles will satisfy this expression for

P .

m

The work of Kraus and Watson _4 is based on linearized equations

and relates to bodies small compared to a l)ebye length in order to
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avoid the complexities of hydrodynamic flow. Pitaevskii zs includes

a recalculation of the results of Kraus and Watson. His paper deals

primarily with the calculation of radar returns from the plasma

perturbations induced by satellites. This work includes the same

limitations that Kraus and Watson's work includes; the body is

assumed small and iinearized equations are used.

S. Rand le treated the problem of the formation of the wake

behind a cylinder with a radius much smaller than a Debye length

and behind a disc_ with its surface perpendicular to the direction

of motion_ having a large radius compared to the Debye length. The

potential of the bodies were limited to quite small values so that

linearized equations could be employed.

Lundgren and Chang z7 give an approximate solution for the

screening of rapidly moving bodies which is constructed from

approximate solutions on the ffont of the body and in the wake

at a distance of several body diameters. The solution is appropriate

only for bodies very large compared to the Oebye length and having

a small potential (straight line trajectories are used for the cal-

culation of ion densities).

The most direct approach to the problem of the interaction

of a charged body with a plasma has been made by Oavis and Harris ze,

They used an iterative procedure in which a trial potential field

was used to calculate ion trajectories which in turn were used to

calculate a new screened potential field. This procedure was re-

peated until a self-consistent solution was obtained.

The results obtained by Oavis and Harris show a rather

complex pattern for the ion density distribution in which there
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exist several separate regions or pockets of reduced or enhanced

density, On the leading surface of the satellite the calculations

yield a density distribution that increases toward the axis as though

a "singularity 'l existed along the axis on the front of the body.

Such a _tsingularity _l has not been explained by the authors and does

not appear to arise from physical conditions. In view of these

facts 3 it is not certain that successive iterations converge toward

physically real solutions.

Ne wish to obtain solutions to the screening problems that

will not be subject to the limitations of the above papers, Ne will

obtain exact solutions to the problem of the screening of stationary

spheres embedded in a plasma and also we will obtain solutions for

the case of rapidly moving bodies which will be limited by less severe

restrictions,

As already mentioned 3 the screening 3 accretion_ density distri-

butionj charging_ and drag are complicated by the fact that the poten-

tial is not independent of these processes_ but is strongly dependent

on them. The treatment that we present here provides a self-consistent

approach to all of these problems allowing a simultaneous calculation

of all these interdependent quantities. Thus we do not make calcula-

tions based on an assumed potential or space charge distribution and

we do not employ iteration calculations.



CHAPTERII

FORMULAEFORTHECALCULATIONOFTHESCREENING

OFA STATIONARY CHARGED SPHERE

A. Plasma of monener,qetic particles. The subject of the

screening of charged bodies in a coil isionless plasma is best ap-

proached by giving consideration to the simplest of the problemsj

i.e. s the screening of a charged sphere at rest relative to the

plasma. The body's potential is assumed to be constant in time and

not necessarily equal to the equilibrium potential (a wire to the

body or high energy electrons in the plasma may be assumed to main-

tain the potential). The problem can be approached in several ways -

principallyj by the use of the Boltsmann-Vlasov equation s or by a

consideration of the particle trajectory as limited by the conserva-

tion of energy and angular momentum. The latter treatment has the

advantage that a more complete understanding of the mechanics of

the screening process can be gained. We follow the formulation given

II

by E. J. Opik 13.

In the neighborhood of any point in a spherically symmetric

potential field (see Fig. (2.1))s we can express the potential en-

ergy (_)- + eVs positive if attractive s negative if repulsive)

R} m Kr "n (2.1)

where K and n must be evaluated in that neighborhood. It will be

convenient for our calculations to use this expression.

The conservation of angular momentum and energy may be written

in terms of the particle velocity v_ at r3 the impact parameter q, and

the velocity of the particle at infinity u by

-lO-
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and

rv sin c_ = qu (2.2)

1 1
mv2= t)+ mu 2 , (2.3)

where _ iS the angle between v and r. that will be referred to as the

"pitch" angle 3 and t) is the potential energy of the particle relative

to infinity and is positive for an attractive force and negative for

a repulsive force. If we write U for the ambient anergy mu_/2 we

have on combining the angular momentum and energy equations

q2
sin 2 _ = (2.4)

r= (I + _lU)

This expression can be used to distinguish between two types of

particle motions. The first type is called periastron motion. For

this type 3 as r decreases from infinity 3 there always exists a value

of r for which

q== r2 (l +  lu) (2.5)

SO that sin 2 c= becomes unity. Under this condition the space inside

this value of r is not accessible to the particle. For a repulsive

potential this condition can always be satisfied.

If we now substitute Eq. (2.1) into Eq. (2.)4) we have

92
sin 2 CZ,, r_ + Krat.n/U -==qa/F (2.6)

When n < 2j the denominator F always approaches zero as r goes to

ze rO.

However_ if n > 2_ there is a point r c for which sin 2 cx

reaches a maximum va]ue. This value of r is obtained by setting

the derivative of F equal to zero
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or

chF
= 0 = 2 + 2_IIU + r (dl_IdrllU , (2.7)

2r + (2 - n) Kr z'n/u = 0 (2.8)
C C

which gives for the potential at r
C

(nc2u= - 2) (2"9)

The value of r is
C

C

rc == "2U" m

where the subscripts refer to the values of the quantities at corres-

ponding value of r c. Thus, inside r c the particle spirals toward the

origin. Here the orbit is called pericritica]. For a given value

of q, the maximum value of o_ is obtained from Eq. (2.4)

( n c - 2) (nc"_)/nc 2/nc
( s i na CZ)max q2 2U= (_-_) . (2.11)n

c ¢

We note that n and K depend on U, but on nothing else. Hence
C C

(sin 2 OC)max varies directly as qa. Evidently_ the limiting condi-

tion for entry into the pericritica] region is

(sin _ O_)max <_.I (2.12)

For entry into the periastron region the right side of (2.11) must

become greater than 1 and (sin 2 _)max = 1. Thus Eq. (2.11) sets a

lower limit on qp for the target radius of periastron type orbits

for the case n > 2_

q _ qP = nc_ (Kc/2U) Z/nc (nc - 2) -(nc-2)/2nc , (2.i3)
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or

qp = r c Jnc/(nc 2) (2.14)

Particles satisfying Eq. (2.13) will enter along a periastron

trajectory and emerge from the field in a way similar to a hyperbolic

trajectory. Those with q < qp_ howeverj will always make an angle

of less than 90 ° with the radius and spiral inwards until the particle

hits the body or otherwise has its orbit changed. These orbits are

of the pericriticai type.

'We are now in a position to calculate the accretion of particles

through a spherical surf'ace. The number of particles passing through
i

a target ring q to q + dq (see Fig. (2.1)) is

dA = 2it q dq uNo _ (2.15)
q

where No is the ambient density. Now from Eq. (2._) we have

Thus

q dq - r a (1 + _/U) sin c_ cos c_ d c_ (2.i6)

dAo(= 2IT r 2 uNo (I + _/U) sin c_ cos (;z d c_ (2.17)

The integral of this for the periastron case for which a11 values of

o_ are allowed is

f,

Apa .. 21r r _ uNo (1 + _/U)v,/ sin ol cos o_ d o_
o

= 1Tr2 uNo (1 + I_/U) . (2o18)

Now for the pericritical interaction_ where _) > O_ n > 2 and r < rcJ

the accretion is constant_ involving all the particles that have

reached the pericritical surface_ r c. Thusj the accretion has the
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same value for all r < r :
C

Apc = rra c uNo (i + Bc/U)

This result is also obtained by using the limits 0 to (zmax

i n teg rat ion of Eq. (2.1 8) .

The partic]e density can now be obtained in terms of the

potential energy from the above accretion formula. Thus_ we have

the density contributed by partic]es moving at an angle between (X

and (z + d o_

I
dN - dAY4_Tr2v cos o_ = _ NO (1 + _/U/_ sin cZ d o_

For periastron orbits an integration of this yields

(2•19)

i n the

....... • F 1 .... ,....,,
Npa = _ QNo t l + o,u -j sin c_ d cz = _ QNo (i + _/u)-.t_•-'=)

0

The factor Q is the return factor. If a particle that passes through

the spherical surface at r is elastically reflected by the body so

as to return and again pass through the surface at r, the particle

orbit must be counted twice and_ thus_ the return factor wi]i have

a value 2 for this particle. If the particle is absorbed and does

not return3 the value is i for this orbit. The return factor in

Eq. (2.21) is an average value of the return factor taken over all

particles• If the collision is ineleasti% a more involved calcu-

lation may become necessary. It will be found_ however_ that in-

elastic collisions are not important since the reflection coef-

ficient for both ions and electrons is small zsJ 20_ az_ 2_ Further-

morej although secondary electrons are produced_ they ordinarily can

be neglected_ a calculation that includes their effect will be made

in Sect ion G.

• (2.20)
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The density relation expressed in Eq. (2•21) is the same

expression derived by Singer23 3 for the problem of gravitational

accretion of interplanetary dust. As shown here 3 Eq. (2•2l) is

applicable not only for the I/r gravitational potential but for any

potential field satisfying the periastron conditions.

The expression for the density in the case of pericritica]

interaction is obtained by an integration of Eq. (2.20) over the

limits 0 to C_max_ where O_max is given by Eq• (2.11):

l '_l qp2 'INpc "= _ QNo (i + _l/U) " [! " r _ (1 + _/U) ] . (2.22)

Equations (2,21) and (2.22) completely define the density of

the ions and electrons anywhere in the screened electric field of

the charged body• If N. is the density of electrons and N+ is the

density of ions (here taken to be singly ionized)j then the Poisson

equation for spherical symmetry becomes

d_ 2 d_
"_r = 4fre'_ (N. - N+) -r "_r • (2.23)

Equation (2°23) can be rewritten in nondimensional form by expressing

r in terms of the Debye length and _ in terms of the energy U of the

plasma particles, However_ since it is customary to express the

potential in terms of the temperature T of the piasma_ let us write

U = _ mu_ _ kT and define the nondimensional potential and radius

= _/kT T _ 2U/3K

p = rib . (2.24)

where k is the Boitzmann constant and h is the Debye screening

distance as given by

to be
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h '= _ (MKS)
Ve'= NO

where e is the electronic charge and No is the ambient density.

If we consider the charged body to be negative (this choice

is made for convenience only; the results hold equally well for a

(2.25)

since the field is repulsive to the electrons. Thus we can write,

using the definitions of Eq. (2.24),

1 2 )bn. "- N./No = _" Q (I - _" I_1 (2.26)

Since the field is attractive to the ions, the ion density will be

given by Eq. (2.21) in the periastron region and by Eq. (2.22) in

the pericritical region. To be in the pericritical region the ex-

ponent n must be greater than 2 an_.dd r must be less than r c

defined by Eq. (2.10). Thus, the ion density will be

as

2 ){n+ =- N+/No = ½ Q (1 + _" I_1 W (2.27)

where

W ==

I

l when n <_2 or when (In - 21 /3)w <_.I

i

i - [! + 7n (Ln2T ]
,=.

½
in all other cases.

(2 °28)

We can now write the Poisson equation, Eq. (2.23), as

_" = n. - n+ - 2_'/p

where _' =_ d_//dp, _" = da_/dp a.

(2.29)

positive body), then the electron density will be given by Eq. (2.21),
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The value of n must be evaluated at each point in the

integration of Eq. (2.29) since the potential does not follow a

simple power law over a wide range of r.

B. Results of calculations for a plasma of monoenerqetic

Rarticles. The integration of Eq. (2.26) using Eqs. (2.27)_ (2.28)

and (2.29) for densities of the screening particles was obtained

by numerical methods. The self-consistent field calculation pro-

ceeded from a position Po_ for which a small value of the potential

_o was specifled_ toward the origin (rather than starting from the

surface of the charged body.

Approximating Eqs. (2.26) and (2.27) for small values of

=,A =,,keti,,,_Ing In _q (9 9Q_ girlie _ i|n_r d|ff_r_nf|_l equaf_nn

with a general solution of the form

. A e" _ p . (2.30)
P

This expression can be used to obtain _o _, the initial values of _'

*o' n - (I + _ PO) _o/oo . (2.31)

For a Maxwellian distribution 2 should replace Q/3; see Eq. (2.68).

(Small errors in the initial conditions will be automatically

damped out with a proper choice for the integration intergral _ p.

See Chapter VII for a discussion of this point.) This procedure

produces curves that are independent of the radius of the charged

sphere provided either that few electrons reach the surface of the

body or that the value of Q is 2. We have set the return factor for

the electrons and for the ions to be equal in this calculation, It

2_
can be included as an additional parameter in _ by settin 9 _ = Q k"--_ "
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It is this function which is plotted in the curves.

In Fig. (2.2) we have plotted log _ against log Pt to obtain

a family of curves. As an example of the use of these curves, assume

a body with a radius of 23 Debye lengths has a potential of 15 kT.

This corresponds to point A and thus the potential falls off from A

along curve e. A curve connecting the pericritical surfaces is shown

along with the equilibrium potential curve for a hydrogen plasma.

The curve for the pericriticai surface is approximately a straight

line satisfying _cPc = 3.68.

The potential curves fall off much more slowly than in the case

of local thermodynamic equilibrium. This is shown in Figs. (2.3) and

(2.4) using the iinearized solution for the case of local thermo-

dynamic equilibrium. Here we plot the ratio h*/h against p, where h*

is the value of the Debye length necessary in the local thermo-

dynamic equilibrium screening formula (see Eq. (2.68)) for _D to make

_O (h*, r) = _ (h, r) and _D' (h*, r) = _ (h, r) in our calculation

for a given point. A set of curves are given which correspond to the

set of curves in Fig. (2.2). Thus the Debye type formulation gives

a much stronger screening than that presented here. The reason for

this becoming obvious on consideration of the plots. The most inter-

esting curves of N+/No and N /No plotted against p, as shown in

Figs. (2.5) and (2.6). In these curves the density of the ions first

rises slightly, then falls rapidly to quite low values and finally

rises rapidly as the screening particles converge toward the originl

the density of the electrons falls rapidly to zero. For the case of

local thermodynamic equilibrium, the ion density does not drop off but

rises exponentially.
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C. Plasma of particles with a Maxwellian velocity distribution.

A derivation 'for the screening equations for the case of a

charged sphere embedded in a plasma having a Maxwellian velocity

II

distribution has been given by E. J. Opik 13. Since certain expres-

sions must be expressed in a different form to be used in numerical

calculations and since additional consideration must be given to the

II

pericrltical case, we will repeat briefly Opik's derivation and

include these modifications.

For a plasma with a velocity distribution Eqs. (2.21) and (2.22)

can be used to relate the (differential) density_ dNo_ of ambient

particles in the velocity range u to u + du to their (differential)

density dNpa or dNpc at a point in the potential field of the charged

Eody. Replacing dN and dNo for N
pa pa

 /u)½
dNpa = _" Q (] + dNo

and No in Eq. (2.21), we have

For the density of ambient particles with velocity in the range

u to u + du in the case of a Maxwellian velocity distribution

dNo is given by

(2.32)

where

and

dNo- No P dx (2.33)
X

-- -X2P dx - L_ x=z e dx (2.34)

x

x = (m/2kT) "} u ; or U ='1 = x 2mu2 kT . (2.35)

By integrating Eq. (2.32) over the proper limits for the case

of repulsion we obtain
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Nr -- ½ Q No e_/kT ; (J_ < O) . (2.36)

= dNr_For pericritical attraction we integrate over dN a

the limits differing from the case of repulsion_ to obtain

l [2____/kT + _/kT]Na -- _ Q No @ (_/_/_7_) e _ (_> O_ n < 2)
F

(2.37)

where the function 9(x) is given by

I_(x) = 2 / e-y 2 dy (2.38)

For the general case in which some particles are pericritical

and the rest are periastron we integrate dN a over all those particles

that are periastron and for the pericritical particles we use dN

corresponding to Eq. (2,22)

= I _/U)'_ I qp2 ½} dxdNpc g Q NO (I + I - [I -r _ (I + h/U) ] Px

I dx (2.39)
= dN a + _ Q No [(l + _IU) - qp2/r2]_ Px

At a given position r and with n > 2_ the ambient kinetic

energy U will determine whether a particle is pericritica] or

periastron. According to Eq. (2.9) a particle is pericritical if

U < Uc and periastron is U > Uc where

n -2
= -- ¢) (2 40)

Uc 2

dN
pc

The total density_ Np, will be obtained by an integration of

from 0 to U and dN from U
C a c

_ x

l l c

•, + I
Np , dN a _ Q No, [(I dx

0 0

to _. Thus we obtain

+ _/U) - qp2/r2]½ Px (2.41)
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whe re

2 m U /kT
Xc C

The integral over dNa

Zs X 2 Z _ X 2
3

C C

is given by Eq. (2.37).

(2.42)

If we write

= l)/kT , p = r/h

we obtain for N :
P

N
P

= 21--Q No + e (

Z 2

2 f c Pc ½--- T(z+F o z}e dZ (2.44)

where qp has been replaced by rc II + _}c/U , _)c being a function of

r ,
c

In a numerical integration of Poisson's equation the integral

in Eq. (2.44) must be evaluated at each point in a step-by-step

integration. The integration must begin at a boundary condition

at a large distance from the charged body and proceed to the surface

of the body. We find as we proceed to smaller values of p and

higher values of _ that particles with increasingly higher values

of U will attain pericritical trajectories. Thus it is necessary

to compile a table of _c and Pc for successive values of Uc as

they are reached in the integration.

A complication arises if Zc, the limit on the integral in

Eq. (2.44) j rises to a maximum value Zm (as the integration proceeds

from the boundary condition toward the surface of the charged body)

and then drops in value. The integral in Eq. (2.44) extends over

all pericritical trajectories. Pericritical means that all particles
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with ambient energy U will have velocity vectors confined to a

cone of ang! e 0 to O(m@x, O(max < it/2 (see FIg. (2.7)).

In order for particles with ambient energy U to become peri-

critical they must enter a region where n > 2. It does not follow,

however, that they will become periastron where n again becomes

less than 2. The upper limit on the integral in Eq. (2.44) must

be selected accordingly. Thus Zc must be chosen to correspond

to the value of Z for which _ = _/2. This condition yields
max

pc2 (Zc + _'c)Ip_ (zc + _) = I (2._5)

The complete set of equations for the solution of the

screening problem where the plasma has a Maxwellian velocity dis-

tribution includes Eq. (2.26) where for a negatively charged body

N_ is given by Nr, Eq. (2.36), and N+ is given by Np,
Eq. (2:44).

Since the mass of the ions and electrons does not appear in the

basic equations_ the results will be identical for a positively

Charged body except for the sign. The variable Zc is given by

Eqs. (2.42) and (2.43)_ if Zc drops from its maximum value_ it is

given by Eq. (2.45).

Using Eq. (2.18) and making the changes made in the transi-

tion from Eq. (2.21) to Eq. (2.321, the differential expression for

th¢ accretion of attracted particles with a Maxwellian velocity

distribution is

dA = Trr2 No u (I + J)/U) P du (2.46)
r u

where r is the radius of the spherica] surface and
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3Pu du = _" ('_'T) U_ e "mu_-/2kT du

Here it is assumed that _ is positive for an attractive field,

(2.47)

Substituting

Z = U/kT = mua/2kT; _ = (_/kT (2.48)

we obta in

8_ N r2 (Z+_) e"z dZ
dAr = _ m o

(2.49)

The total accretion is obtained by integrating (2.49) over all Z. It

must be remembered, however, that r and _ will become rc(Z ) and _c(Z) for

all particles that are pericriticai at r, _, Thus

Z

-,=/ u,,__.._z,N (Z +_)e - dZ +Ar m o Zc o

r:2(Z)[Z+_ (Z)]e'Zdz] ,_ _,

where Z denotes pericritical energies within the range 0 < Z < Z c.

The first integral in Eq. (2..50) yields

,Zc
e (1 + Z +_);

c
(2..51)

th erefore,

Ar = F No{r2(1 + Zc +_) e'zc

zo t+ ?o rc2(Z) [Z + _/c(Z)] e"z dZ
(2, ..52)

where, from Eq. (2.40),

n-2 _ for n> 2

Zc n<2

(2, ...53)
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Expressing the accretion for the attracted particles in a nondimensional

form T÷ j

= errrkTT+ o

Z

+ ts)e"zc+; c
= P2(I + Zc o

2(Z) [Z ÷ _ (Z)] e"Z dZ (2._)
Pc c

Again_ let us mention that _ is positive for an attractive field.

A comparison of Eq. (2.94) with the corresponding equation derived

by Mott-$mith and Langmuir 4 shows that the two expressions are completely

different. Their result_ based on the assumption that the screened field

may be treated as a finite sheath, do not appear to be consistent with our

results,

'_ ikZ3Op. has shown, that the accretion Ar'. of the repelled partic|es_

having a Maxwel|ian ve!ocity distribution at infinity is

Ar' = _r2 N u V 8/3_ e 3_Im'us2o s (¢ < o) (2.99)

where m m is the mass of the repelled particles as opposed to m for the

attracted particles and us is given by

u = /'3kT/m' (2,56)
S

I

Therefore_ we can write A_ in terms of P = r/h and $ = _/kT.

=/ _IrkT h2 p2 e_ ( )Ar'. -7 No 2, 9?

Multiplying A' by_mlSTrkT IN h2 as in Eq, (2.94) we obtain
r- o

T. = _ __L87TkT = m p2 e (2.98)
0

This result is identical to that of Mott-Smith and Langmuir4for a

repul,s ive field.
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The total current. I to the body is
s

0 " P= PS

where e is the electronic charge and Ps is the radius of the body in Oebye

lengths. In order for the charge on the body to be in equilibrium with the

current from the plasma_ the current to the body must zero_

I =0 (2 r^,,OU)
S

Substituting Eq. (2.59) for the current into Eq. (2.60) and changing the

former definition of _ so that it is positive when ions are repelled and

electrons are attracted we obtain

Z

Ps2(l + )e.TZc c
_Zc " TCS + v pc2(Z) [Z - _c(Z)] e dZ

(2,61)

Here we have included the ion and electron temperatures Ti_ Te in

T = Te/T i. The value of Zc must be that appropriate for the surface of

the charged body; mi and me are the ion and electron mass_ respectively.

We have defined _Is and Ps in terms of the electron temperature.

For a sufficiently small value of Ps (about _ or less) Zc will be

approximately zero. For this approximation the integral in Eq. (2.61) is

zero. We obtain for _/s therefore

_s = -ln [4 Tm./m, e / (1 - T _/s)] (2.62)

For moderately large to lar9e values of Ps we can approximate

Pc _ Ps since the pericritical surface will lie close to the surface of the
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The integral in Eq.(2,61) becomes

Z

[Z - _c(Z)]e"TzdZ

"TZ C e'TZc "TZ C_ ps2 [!T(l - e -TZc ) - _c(l- e 1] (2.65)

where _/c is the averaged value of _/c" For moderately large values of Ps

(about 20) Z is small and thus exp (-Zc) will be nearly I. We have inC

that case from Eq. (2.61)

_s = -in [4Tmi/m e /(I - T_S )] • (2.64)

If Ps is large, then Zc will be large and "_s will be close to _s in

value. Assuming _c = k_s where I > k_ 0.5, we obtain from Eq. (2.61)

(2.G>)
Therefore, rewriting Eq. (2.65) we have

e_/s = 0

_S = "ln[_Tmi/me /(I -Tk_s) ] . (2.66)

Thus we obtain the same or approximately the same expression for _s in each

case,

Evaluating Eq. (2.62) or (2.64) for a plasma of ionized hydrogen,

mi/m e = 1836.5 and Te = Ti, yields _/s = = 2.504. Using Eq. (2.66) to obtain

@s for large Ps yields _s = -2.87 where k = 0.5. We see_ therefore, that the

value of _/s is fairly insensitive to the value of k. For a plasma of ionized

= = T we find using Eqo (2.62) _/_ -3.61.oxygen, mi/m e 29167 and Te i

The results of the numerical ca]culation (section D) may be compared

to the above values for _s" For a hydrogen plasma in which Te = To_ the num-

erlcal calculations give @s = 2.508 for Ps = 0.0013, Ss = 2.811 for Ps = 3.83
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and @s = 3"495 for Ps = 83.67. In the case of an oxygen plasma the values

are @s = 3.669 for Ps = 0.0064, @s = 4.418 for Ps = 11.45 and @s = 4.856

for Ps = 82.77. The above approximate equations for _s (Eqs. (2.62), (2.64),

(2.66)) appear to be valid and applicable for smaller values of Ps than

anticipated.

D. Results of Calculations for a Plasma of Particles with a

Maxwellian Velocity Distribution.

The numerical solution of Eq. (2.26) using Eqs. (2.36), (2.44), (2.42)

and (2.45) is obtained for a plasma with a Maxwe]lian velocity distribution

in the same way it was obtained for a plasma of monoenergetic particles.

A self-consistent field calculation begins at the point Po where we specify

an arbitrary but smal] value for _ = _o' the nondimensional potential. The

calculations proceed from Po toward the origi,i. To start = .... _ ..... _

of the body and calculate toward the edge of the sheath would require an

iterative procedure.

As in Section B of this chapter, the formula derived for the screening

under local thermodynamic equilibrium provides an approximate value for @o I

(See Eq. (2.31)) and any error in the initia_ conditions will be damped out if

Z_p is sufficiently small. Again, we have used Q = 2 in our calcu]ation but

1
Eq. (2.31) may be used to obtain results for Q =

To obtain the ion and electron currents to a spherical surface of radius p,

which may be the surface of a body_ or a surface concentric to the body, we

evaluated Eq. (2.54) and (2.58) at every point with m I = me (e%ectron mass),

m = m (proton mass), and m (oxygen mass). The evaluation of Eq. (2.54)
p o

for the ion (in the case of a negative body) current and Eq. (2.44) for the

ion density involves an integration at each point.
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Figure (2.8) shows a logarithmic plot of _/ versus p. This plot corres-

ponds to Fig. (2.2) in which the results for the monoenergetic equations were

presented, The labels for these curves Po = _ 10_ 20 etc. refer to the

initial value of p at which _/ = _o (_/o = 0.001 or less for every curve).

Starting at any point on one of the family of curves_ we have a pair of

values pl $, which can be set equal to _s_ ps_ the radius of a spherical

body and its potential, The remainder of the curve (for p > ps ) gives the

relation _(p) for this particular situation (i,e._ for _/s_ ps ), The portion

of the curve where p < l0s is inside the body and has no application for the

particular examp}e. For a demonstration of the use of Fig, (2.8) refer to

Fig. (2.2).

For a plasma of particles having a Maxwellian velocity distribution

the ambient energy U of particles lake= on all values. ,,,u= _,,=,= .........

pericritical surface for all particles. In Fig. (2.8) we therefore illustrate

the _pj pp curve where pp is the radius of the pericritical surface for particles

of energy U/kT and _p is the potential for that surface.

When the ion current to a body equa]s the electron current to that

body_ the..potentia] on the_body wii] be in equi]ibrium (Eq. (2.60)). Since

we can calculatethe ion current using,Eq. (2.54) and the electron current using

Eq. (2.58) step-by.step as we ca]culate _(p) we can obtain the __ p curve

for which the total current to the body is zero. The resulting curve for the

equi]ibrium potential _/e vs. p is shown in Fig. (2.8). Results for both a

hydrogen plasma and an oxygen plasma are illustrated. It will be noted that the

results are similar to those already obtained (see Eq. (2.64)).

In Fig. (2.9) we show a continuation of the ]ogarithmic plot of _/ and p

extended to small values of p. There are no pericritica| surfaces here. The

curves are almost straight_ yielding an approximate eqgation
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= kp "z p << I (2.67)

which is also to be expected from the solution of the linearized form of

_2_ = e+_ . e"_ (using our sign convention)

_r = _s e'_" (P-Ps) Ps/p (2.68)

which becomes

= _rs ps/p (2.69)

for p << 1.

The equilibrium potentials for an ionized hydrogen and a singly

ionized oxygen plasma are shown. They are nearly constant throughout the

range of p.

In Fig. (2.10) we have piotted_/(p) using a linear scale for p. The

coordinate Po - P used gives the distance from the initial point Po of the

numerical calculations. The origin for a particular curve in Fig. (2.10),

therefore, will be at Po - P = Po (rather than Po - P = 0). It will be seen

that for Po = 100, $ increases from 0.001 to 1.0 in about 13.5 Oebye lengths.

This should be compared with about 5 Oebye lengths using the solution to

the l inearized equation (see Eq. (2.68)).

This difference arises from differences in the screenin 9 equations

derived here and the solution to the linearized screening equation using

e+_"n = for the densities. The basic difference lies in the existence of

+$
pericritical orbits_ ignored in the simple e- expression for densities.

As may be seen in Fig. (2.8)_ all particles with energy less than 8 kT are

pericriticai on the Po = 100 curve before _/ = 1, In addition, a distance

of seventy-five Debye lengths is required for a six order increase (_ = 10 -3

to 103 ) in the potentialjcompared with 15 Debye lengths using Eq. (2.68).

An example of the use of_/_ p curves is shown in Fig. (2.10). The

position corresponding to a body of radius 10 Debye lengths and potential



-30"

energy lO kT is shown. The dashed curve shows the subsequent drop

in the potential.

The variation in the density of the ions (or attracted particles)

for a plasma with a Maxwellian velocity distributionj Fig. (2.]!),

shows the same general features as the monoenergetic case Figs. (2.5)

and (2.6). The density drops as the screening ions are accelerated

by the electric fie]d and then increases as the ions converge toward

the origin. There still exists for some values of Po a slight increase

in density, initially followed by a decrease and then a large rise in

density (observe Po = lO in FIg. (2.8))_ but this is much less pro-

nounced than for a monoenergetic plasma.

Figure (2.12) gives the difference between the ion density and

the electron density, n+ - n , again plotted against Po - P. The

initial rise in the curve indicates the drop in the electron density

and the rise in the ion density. For the larger distances, however,

the ion density also drops as a result of the acceleration of the ions.

For smaller initial values of Po, this dip does not occur since the

convergence of the particles toward the origin (thereby occupying a

smaller volume) is more important than their acceleration.

E. Current-voltage characteristics for a sphere embedded in

a plasma with a Maxwellian velocity distribution_ comparison with

Mort-Smith and Lanqmuir equations. As we have seen_ the ion current

(if the body is negative, electron current if positive) to any

surface concentric to the surface of the body_ as well as to the body

itself can be obtained using Eq. (2.54), and the electron cucrent

from Eq. (2.58). Figure (2.13) shows a plot of the quantity loglo

(] + T+) versus Po " P. (This function of T+ is used so we can
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include both large values of T+ and T+ -- 0.) Let us consider how this

graph is to be used. The example in Fig. (2.10) for a body of radius

lO Debyelengths and potential energy I0 kT shows that the surface of

the body lies at Po - P = 10.]5. In Fig. (2.13) the point corresponding

to the surface of this body lies slightly off the Po = 20 curve as in-

dicated. The value of T+, the nondimensional current_ at the surface

of the body is T+ = 2]4 for this example.

In Fig. (2.14) the same quantityj loglo (l + T+), is plotted

against Po - P for small values of Po. The curves in this graph cor-

respond to the _, p curves in Fig. (2.9).

In Fig. (2.15) the total nondimensional current for both ions and

electrons is given. The graph is similar to Fig. (2.13). Since (T+ - T )

is initially a negative quantity_ it is necessary to take the absolute

value. When the total current to the body is zero, loglo (i + IT+ - T [)

equals zero. The value of Po - P for which the total current is zero

can be used with Fig. (2.8) or (2.10) to obtain the equilibrium potential.

Figure (2.16) shows loglo (l + IT+ - T_I) plotted against

Po - P for small values of Po. The curves in this graph correspond to

the @, p curves in Fig. (2.9).

As seen above in the examples_ the use of Figs° (2.13) and (2o14)

is rather cumbersome. It' is more useful to plot T+ vs. @s for bodies

of various radius pst the subscript referring to the value of the quan-

tity at the surface of the body. This gives the current-potential probe

characteristics for probes of various sizes° Mott-Smith and L.angmuir 4

(we will use MSL as an abbreviation) derived equations foc the probe

characteristics of flat'planes, for infinitely long cylinders, and for

spheres for both a monoenergetic and a Maxwell ian velocity distribution.
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For the probe characteristics of spherical bodies their expression for

the repelled constituent of the plasma (electronss if the body is nega-

tive) is identical with our results Eq. (2.58). The MSL equation for

the attracted constituent (ionss for a negative body) is quite different

from our results; expressed in terms of the nondimensional current (see

Eq. (2.54)) they obtain s

T+ MSL = OC_{l -(l- ps2/Ct_)exp [-ps 2 J,sl/(ot_ -ps 2)]} (2.70)

where Ps is the radius of the body in terms of the Debye length s hs and

(z is the nondimensional distance from the center of the body to the

outer edge of the ion sheath around the body. These authors assume

the sheath has a sharp edge and therefore s is essentially finite in

thickness. No equation is given for the thickness of this sheath s

nor is there a satisfactory criterion for estimating the sheath thick-

ness. The sheath iss however s assumed by Mott-Smith and Langmuir to

be of the order of a Debye length. If so s the exact value would not

be necessary in order to obtain accurate calculations for very small

or very large bodies. Our work does not support these assumptions in

general. However s if Ps << c_ and ps¢ s << Is Eq. (2.5L_) reduces to the

same expression as T+MSL s Eq. (2.70); namely s T+ = ps 2 (l + _/s ) .

Figure (2.17) illustrates the current-voltage characteristics

for a spherical probe obtained in the numerical solutions of the

screening using Eq. (2.5}+) for T+. The radius appears as a parameter

of the family of curves. For small values of the potentials the current

depends primarily on the geometric cross-sectiono As the potential

increases on the body s the current increases without any apparent

1 imi t.

Figure (2.17) also shows three typical Mott-Smith and Langmuir
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characteristics using Eq. (2.70) for T+ MSL. For Ps' the nondimen-

MSL
sional radius of the charged body, equal to 5 we show T+ using

for the sheath thickness the values I and 5_ making o_ = 6 and lO.

Sheaths of such thickness are commonly used and have been considered

satisfactory by many workers. This arises_ howeverj from a mis-

understanding of the complexity of the screening problem. The space

Charge about a probe is not properly represented by a finite sheath.

We find_ therefore_ in Fig. (2.]7) that T+ MsL does not resemble T+.

The Mott-Smith_ Langmuir function underestimates for potentials

below ] kTj gives too large an increase near I kT (rising exponentia!Iy)_

and finally for larger values of _ T+ MsL approaches the value o_

MSL
as an upper limit. It is the asymptotic behavior of T+ for large

that is particularly objectionable about the Mott-Smith_ Langmuir

equations. The theory is misleading 3 for it implies that the cur-

rent approaches a maximum value which depends upon the rate at which

ions can drift across the sheath boundary_ rather than upon the poten-

tial. An effort to adjust the MSL equation to fit the data of Fig.

(2.17) would have to allow for a considerable variation in the sheath

thickness. For examp]e_ the differences exibited between our result

using Eq. (2.54) for T+ and Eq. (2.70) for the Mott-Smith_ Langmuir

function T+ MsL are quite iargel consider the case where Ps = 5 and

_Vs = lO00. We obtain T+ -- 3620_ for T+ MsL to equal 3620 the sheath

thickness must be 55 Debye lengths (cx = 60). Such a large value is

not difficult to understand. Near a body charged to lO00 kT_ the

high velocity of the ions would depress the density by a factor of

32. If the sheath were only 5 Debye lengths thick, the maximum

value of the ion density would be only 0.12 of the ambient density
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and would produce little screening. The field must_ therefore_ be

much more extensive than just a few Debye lengths. In Fig. (2.17)

an additional T+ HSL curve is shown for Ps = 50. This comparison

is included to show that the value of the sheath thickness does not

become less important even for relatively large bodies. It would

appear_ then_ that the Mott-Smith, Langmuir equations for the

probe characteristics are not valid in general for an attractive

potential.

F. An expression for the sheath "thickness" for calculating

current-voltaqe characteristics. Let us consider the possibility

of finding a simple expression for the "sheath thickness" s which

can be used with the MSL equation to obtain results in agreement

with ours. Such an expression would be quite useful although not

entirely satisfactory theoretically since the idea of a finite

screening sheath is an approximation.

The charge qb on a spherical body surrounded by a concentric

charge layer of radius _ = Ps + o Debye lengths given by

qb = Cs _s kT/e

Ps +o
hkTps Ss (cgs units)

= e_ 2Ps + o

whe re C
s

(2.71)

is the capacitance of the concentric charge layer and o = s/h.

An equal and opposite charge must lie in the sheath. The density of

the ions is given by Eq. (2.28) and (2.29). If the variation in the

potential is very rapid (i.e. if in Eq. (2.29) the exponent n >> l)

and if _ >> l_ then Eq. (2.28) becomes_ approximately_
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n+ _ -.

where Q is the return factor.

written

(2.72)

The charge in'the sheath qs can be

qs = __ h3 [(Ps + °)a - Ps 3] No eOJ(Czv/1 + _ _s ) (2.73)

where 61¢1 + _ _s is taken to be the averaged value of n+ for the

sheath. Equating (2,71)-and (2.73)_ and setting o >> p we obtain for a

= (2 _ C1) :_ ps I_ _/s :_ (2.74)

where @ >> 1 and Q = 2.

Bettinger and Walker 2a have found that the data given in

Fig. (2.17) can be represented using the MSL equation (Eq. (2.70))

and

a = 0.83 ps { _s _ (2.75)

Values of T+ MSL calculated using Eq. (2.75) are surprisingly accurate

over the entire range of Fig. (2.17).

If we use Eq. (2.75) in Eq. (2°70) and substitute into Eq.

(2.59), we can obtain an expression for the equilibrium potential

on the spherical body. If we assume o>> ps, we obtain

_i/me PS _

_s = - In
-1 45 p'_

.69_" s (I = e '

(where o >> Ps or 0.83 _½ 1o" _ >> l)

(2.76)

If_ on the other hand_ we assume Ps >> o_

¢

we obtainj
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Is ,- - In [ v/'_ilme/(I + 1.66 _'s_/Ps#)]

(where Ps >> _ or 0.725 p_ >> I) (2.77)

Equations (2.76) and (2.77) are in good agreement with the results of

the numerical calculations. Equations (2.76) and (2.77) show that the

equilibrium potential varies slowly with Ps" In a hydrogen plasma

the maximum (absolute) value of _/s is about -3.76 and for an oxygen

plasma it is -5.14. For a body with p = lO00 in an oxygen plasma
S

where Te = T. = ]000, 1500_ or 2200°Kj _) will be -0.707, -1.06, orI S

-I .56 e.v.

G. The effects of secondary electrons on the screenin 9 of

stationary charged bodies. Experiments performed by Hagstrum 19, 2o, 21,

and H. A. Fowler and H. E. Farnsworth 22 have shown that as the result

of the neutralization of ions striking a metal surface, secondary

electrons will be produced with an efficiency of about 25 per cent.

These electrons have not been included in our previous calculations.

Their effect may be easily included into the calculations by intro-

ducing into the Poisson'equation the term Ns/N o where

8 %2 (l + _ _c)
N /No = (2.78)

S

where 5 is the efficiency of secondary electron production, and _s

is the potential at the surface of the charged body (or alternatively

at the surface for which the secondary electron energy is zero).

In Fig. (2.2) we have p]otted a curve to show the effect of

this term on the screening. The effect on our previously ca]culated

results will be smai] if the surface of the body has a high potential.
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CHAPTER I I I

THE SCREENING OF A CHARGED BODY WHERE THE RETURN FACTOR Q_ IS VARIABLE

A. Genera| Arguments. In experiments performed by Fowler and

Farnsworth2_ it has been found that the reflection coefficient for

low energy electrons striking a metallic surface is, for our purposes,

smali_ its value is of the order of 59. Hagstrum zg_2°_2z has found

that ions striking a metal surface will be neutralized by Auger charge

exchange with an efficiency of nearly i00_. It would therefore seem

that it is not satisfactory to set Q equal to 2 for particles which

strike the surface of the body. We will derive an expression for the

return factor for the ions, Q_, and we will assume a sufficiently large

negative potential on the body to allow us to use a value of 2 for the

electron return factor, Q_.

If (_ is variabl% then we can obtain the particle density by

inserting Q under the integral in Eq. (2.2|)° From Eq. (2.4) we obtain

for the limiting pitch angle C=L separating those particles that will be

accreted from those that will not

r 1+_ ½

[7c= arc sin ( 1 + ¢c) ] (3.1)CZL

where ¢ = I_I/U, and r c and ¢c are the values of r and ¢ on the peri-

critical surface or on the surface of the charged body_ whichever is

reached first by the particles. Corresponding to Eq. (2.21)3 therefore,

we will have for the density

i _. r Trl2
Npa = _ No (1 + ¢) do Q(c_) sin Q; d_

1 :_ fo c_L p 7r/2
= _ No (1 + ¢) [ sin cz dO_+ 2_/C_L sin c_ clcz]

i
= _ NO (1 + ¢):_ (1 + cos C_L) (3.2)

-37-



-38-

Substituting for o_L from Eq. (3.1) into Eq. (3.2) we obtain

_'1 _)_{ r_rJ( I + 'c)]_}(1+ ')Npa = No (I + I + [I - • (3.3)

We can define for the effective return factor for all particles,

O.pa= I + [I- (3.4)

The use of two different expressions for the ionic and elec-

tronic return factor modifies the screening most strongly for small

values of ¢. If we assume _ to be small, the Poisson equation can

be written as

vp p up - -

where p = r/h. If we take p to be large, then on the perlcritical

surface _c' as obtained from our previous calculations, will be less

than l. Thus the first derivative term in Eq. (3.5) will be small

(these conditions are met if p is about I0 or more) and we can neglect

it. Substituting for O.F from Eq. (3.4) in Eq. (3,5)_ we have the

condi tion

2(i+ 2)]b} ¼
11. I rc c

_--- _ I + [I - r2 (I + _) < (0. + Q+)_ (3.6)

which must be satisfied if a steady state screening equation is valid.

Substituting Q -- 2, Q. + Q_ _ _j subtracting I from both sides and

squaring Eq. (3.6), we obtain,

2(1 +r c _c )
[1 - r2 (1 + _) ] > (1 - 2_)2 (3.7)
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Since

<< I , (3.8)

Eq. (3,7) becomes

rc_( ! + _c )
@ > 4r_(1 + ¢) (3-9)

and therefore the potential must fall off more slowly than r"m. We

also have the condition that if no screening at all occurs, then

¢ = ¢c pcIp (3.10)

This shows that ¢ must vary as

-n
¢=Kr _1<n<2

(3.11)

for small values of ¢. Furthermore, this result will hold in a

modified form even for the case of local thermodynamic equilibrium.

If (_ = 2, then Eq. (3.6) is always satisfied, and for the

region Of small ¢ an integral of the equation can be obtained of the

fo rm

= (3.12)
P

It might appear that if one chooses r/rc to be large enough, the dif-

ference between Q_ and Q. could be neglected. By the substitution of

Eq. (3._) into the Poisson equation, we can show what prevents this.

We have approximately,

_)=z 2 k r _(I + ¢c )(.®). (.®)= c (3.13)

for small ¢. Thus, if we choose

_(i +rc ¢c)

4r_(I + ¢) << _ ' (3.14)

we would obtain a potential of the form given in Eq. (3.12). However,
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rc, r , and @ cannot be chosen independently. Furthermore, if Eq.

(3oi4) does not hold, then the condition In Eq. (3.14) cannot be

satisfied for any ¢ since $ varies as p'_. It appears that the po-

tential does not vary according to Eq. (3.12) over any portion of

the curve for which @ is small and O_ is given by Eq. (3._+).

B. Solution for a monoenerqetic plasma. A solution to the

screening equation approximated for small values of i/r and _ can

be obtained which will show explicitly how the potential falls off

at lar9 e distances from the charged body. This equation also leads

to eigenvalue conditions on the total accretion for a monoenergetlc

plasma and to eigenvalue conditions on rc for a plasma with a Max-

wellian velocity distribution.

The equation for the periastron density in terms of p = r/h,

¢ = IS/U (the absolute signs are removed here) is, by Eq. (3.3),

Npa, = ] No (] + _) "ll2"fl

PO (l, ®c) ½_
÷ [I" p_(l +_) ]j (3.15)

Let us again consider the charge on tile body to be negative (for

convenience only). Substituting3

A+=Pc 2(! -®c ) (3.16)

into Eq. (3.15) gives for the ion density,

. A+ ]+}n+ = ½(I - @)_ I + [l p= (l . ¢) (3.17)

Using a similar definition for A., with Pc -'_ PS and eL --> ¢S'

S referring to the surface values of the quantlties, we have:

n_ = _ (I ÷ _) I + [I - pZ (I + _)]
(3.18)



-41-

Substituting Eqs. (3.17) and (3.18) into Poisson's equation we obtain:

I A. ]_}P

(3._9)

For large values of p and ¢ << I we can write for Eq. (3.19)

A++A A+ -A
_,, + 2_ _, . _(l + ") - " = 0 (3.20)

p 8p 2 4p _

The solution to Eq. (3.20) can be obtained in series form by substl-

tuting

-2n

®= z o_ p (3.21)
n=l n

into Eq. (3.20). This yields

= A+ + A p=2(,n+1) = A_ - A_- C_ (4n 2- 2n =) . z c_ p_2n . -
n=l n 8 n - _p_ = 0n=l

Now, since n is simply a dummy index, we can write

(3.22)

= ® -_(n+l)
_. C_ p-an _- 0_ip-2 + _ CXn+I P . (3.23)

n=l n n= I

If Eq. (3.23) is substituted into Eq. (3.22), we obtain

; _p-2(n+1) [an(4n 2 . 2n

n=|L

A+ + A _ A+ - A -a

8 ".)- _+1]j -(c_+ _. -.)p

= 0 (3.24)

Therefore, we see that in order for Eq. (3.21) to be a solution of Eq.

(3.20) 3 the value of o_z must be

c_I = - _(A+ - A.) (3.25)

with a recursion equation for all other _'s

_n+l = (4n2 " 2n -
A++A

8 ")C_n (3.26)
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Thus the solutions are of the form

I -2 I A+ + A -4

@ = - _(A+ - A.) p - _ (A+ - A.)(I 16 " ) p "°" (3.27)

The solution will not be convergent unless it is terminated. (This is

apparent from the fact that for large values of n the nth term in the

series will be -(A+ = A.)4n'3[(n - ])_]2p "2n in which as n --> _ the

factorial term in the numerator becomes greater than the p2n in the

denominator for any given value of p_ thus the terms of the series and

the series itself diverge as n approaches infinity.) If the series is

to terminate at some value of n = _ then we obtain for the condition

for the termination of the series

¥ - j

or in terms of _, we have

A+ + A. = 16_ (2_ - I) (3.29)

which gives values A+ + A= = 16, 96, 240 etc. for _ -- I, 2, 3, etc.

Thus the first two values of @ will be

I -2

@i " " _ (A+ - A.)O

l
@2 -- " ]T (A+ = A.)p -2 + _ (A+ = A_)O -4 (3.30)

Since A+ - A. must be positiv% Eq. (3.30) verifies the earlier conten-

tion that the potential must fall off at least as slowly as p-2. We

have also shown the rather remarkable fact that for th_s completely

classical problemj we have elgenvalue conditions on the value of A+ + A_.

If we write for the current to the surface of the charged body

I then
S_

Is == eITNoIf_ (uiA + " UeA -) (3.3l)
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• and u
where e is the electronic charge, No is the ambient density, u= e

are the ion and electron velocity at infinity, h is the Oebye length.

We have from the eigenvalue condition Eq. (3.29)

U

I S = e/rNo h2 ui[16J& (2J_ - 1) (1 +-_)A.]
I

(3.32)

In order _o have an equilibrium charge on the body, the net current to

the body must be zero. Thus, for a body receiving current only from

the plasma, Eq. (3.32) must be zero for equilibrium. Therefore A. must

be

A. = 16_ (2_ - i)/(l + Ue/U i) • (3.33)

Since A is given by

A. = p_ (I + _S) (3.34)

where ¢S is the value of _ on the surface of the body, the equilib-

rium value of ¢S is given by

16_ (2_ - i) ! (3.35)
®s = p_ (l * Ue/U,)"

Eq. (3.35) arises from the requirement that the charge on the body be

in equilibrium.

Returning to Eq. (3.29), which must be satisfied if a solution

is to exist, and substituting for A+ and A. from Eqs. (3.16) and (3.34) ,

we have

(I + 2 (l + = 16_ (2_ l) (3.36)Pc - $c) Ps ts) "

For any given values of PS and _S' Pc and ¢c will be determined by the

detailed solution as functions of J_. Thus Eqs. (3.35) and (3.36) con-

stitute a system of two equations in two unknowns giving a satisfactory

PS' ¢S pair for various values of J. Thus, for a given size body,
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and
m

n.=_ (1 +_/u) ½ 1 + [] -p_(] +Z/u)]j,_-ju

where A+ and A are

2 (I - _ Iu)A+(U) = Pc c

du (3.45)

(3.46)

2 (i - Zs/U) (3.4?)A_(U)= Ps

where the subscript c refers to the pericritica] surface (or the body

surface if there is no pericritica] surface), and S refers to the sur-

face of the body. We can write Eq. (3.44) and (3,45) as

whe re

f In+ = -- Jz + J2 (3.48)

n_ =: ii + 12 (3.49)

EJz = (1 - _/U) } u2e'(3UIZdu

o A+(U) ½J2' = (I - ,_/U) ½ [1 - pZ (I - _/U) ]

(3.50)

u_e'CZU_du (3,51)

__2j_( _/u)_
11 = ] + uP'e'CZU2du (3,52)

_/z_7_( A.(u)12 = I + _lu)} [I - r_.(l + _Iu) ] u2e'°CU_du ; (3.53)

Eqs. (3.50) to (3.53) become, on rearranging the quantities and inte-

grating,

Iz = 5 e_VJ _/ = t_/kT
( 3. 54)



-45-

S _VP2 - _/sP_ I 412 /r (I - P_/P_)_ exp ( p_ _ ) I -
= Ps 3_iir

_p_- _sp_ _ }C(p_ . p_ - _) + ...]
(3.56)

J2 = _(I - p2c/P2)_ exp [- p_ Pc I'Ll - --3_iT

_.p2 . _.cPc_

[(- p__ p_ ' + ...]
(3.57)

where _ and _Vc are small and Pc is assumed constant. Substituting

Eqs. (3.54), (3.55), (3.56), and (3.57) into Eq. (3.48) and (3.49)

gives, dropping higher terms:

le _p2 . _cp_n+: _'1 -_ [1 - _3¢E'('_/)_] + (1 - p2c/p2)_ exp [- p'-'_-_---c ]

+ (l -_) exp [- p_ p_ •j (3.58)

_p2 . ._sp_ 1

p_/p2)_ exp [ p2 p_ ,

. [1 . _ (*P2 "*sP_ _ } ½{e _ p_/p2)_3_- p_ Psi'"_) ] : + (] -

_p2 ._sp] .4__(._)B]}
exp[ p_ p]--][l 3_/_-

(3.59)

Thus we obtain, on expanding the exponential terms

2 + _2

Pc Ps_ _ rp_(_ -_,c) _(_ +e, sl]n. - n+ = (_ + 4p _ -_k + 47 " P S

(3.60)

Thus substituting Eq. (3.60) into Poisson's equation, we have
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,,,+ _

2(l +2_s)] = o" PS
(3.61)

We can obtain a series solution of Eq. (3.61) by substituting

O0

-2n
T.,O_ p

n
n= 1

(3.62)

The substitution yields

2 4- 2

oo 2n) p'2(n4-]L) ®T. O_ (4n 2 - - 2 _-CZ p-2n . 2CZo Pc PS
n=l n n=! n - _P_ I I

oo -2n) _ [p2c (I 2_C) 2 (i 4- 2"0/S) ] !•(_o+__ P " " "Ps 7 =0
n=l n

(3.63)

Since

= -2n -2 "4 n+1) (3.64)
_..(Z p = (Z:L p + _.C_ p

n=l n n==l n+l

we can write Eq. (3.(53) as

_o 2 + 2
PC PS n4-:l.)

T_.,[£Zn (4n 2 - 2nn=l 4 ) . 2CZn+].] p-2(

1
I [p_(l - 2, c) - p_ (l 4-2,s)]7 " 2_o-

-2
- 2czz p

2+p_Pc

4p z O(o = 0

(3.65)

Solving for So and _I by setting the coefficient of each power of p

equal to O_ we obtain

0_0= 0
(3.66)

1 [p_ (i - 2_ c) - p_(l + 2_s)]

and the recursion relation

2 ÷ 2
Pc Ps

CZn+.l. = Q;n (2n 2 - n - 8

, (3.67)

) (3.68)
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If Eq. (3.6,2) is to be a solution, then the series must terminate

(since (3.68) leads to infinite coefficients as n --> =). Thus for

some value of n = Jl

2 + p_ = 8_ (2J) - 1)Pc

Let us find the effect of Eq. (3.69) on the equilibrium

potential. From Eqs. (2.54), (2.58), and (2.60) we obtain the equa-

tion for the equilibrium potential,

Zc
f-

(I + z -,s)e"zc+Jp_(z) [Z-,c(Z)]e"z dZ
2

PS c
o

.  ilm J S. 0

(3.69)

(3.70)

Assuming Pc and _c constant, and Zc large, we have,

.It

p_(l-,_)- mi/_7"_e p_Js= o (3.71)

Therefore, substituting Eq. (3.71) into Eq. (3.69) gives,

{ PS_ _mi/me }_/S = " In (1 + _c ) [8_(2_ - 1) - p_] (3.72)

Equation (3.72) shows that 8_(2_ - I) > p_, if _/S is to be negative.

It is possible that Eq. (3.'/2) leads to unusually large poten-

tials in some cases. If Zc is assumed small with Pc and U/c constant

in Eq. (3.70) we obtain

_i e

_S = " In 1 - _/S + Zc[_S " _/c 8_(2J) - 1)/p_]"
(3.73)

for the potential. Since Zc[_/S -_c 8_(2_ - l)/p_] is small, Eq. (3.73)

is essentlally the same as Eq. (2.62).
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there may exis_._[t no steady state equilibrium potential at all.

Let us find the approximate value of CS'

surfe,;e lies within pS_ then Pc --> PS _ ¢c --> ¢_

If the pericritical

and Eq. (3.36) becomes
S

2= 8_ (2_ - l)PS

Substitution of Eq. (3.37) into (3.35) yields, approximately_

(3.37)

2 (3.38)
¢S = " (! - 1 + Ue/U i )

>> u ¢ _ -1 Because of the requirement
Since ue i' S "

that the peri-

critical surface lie within PS' Eq. (3.38) is probably invalid for PS

much greater than I0. (Since the value of Pc = lO is not knownj it

cannot be definitely stated that Eq. (3.38) serves as more than a

demonstration of the use of Eqs. (3.35) and (3.36) in obtaining a

solution for ¢S.)

If we rewrite Pc as

2 :,
Pc p_ (I + x) (3.39)

and substitute into Eq. (3.36), we obtain

x
2 = 8_ (2_ - 1)/[I + _ + ¢S/2 - (1 + X)_c/2] (3.40)PS

Substituting (3.40) into (3.35) gives

¢S = " 1 + (1 - ¢c)(1 + x)/2u (3.41)

Since x is small for large p and u e >> ui, Eq. (3.41) yields ¢S = - 1.

It should be noted that Eqs. (3.35)_ (3,38) and (3.41) apply to a mono-

energetic plasma and give quite different results for _S from those one

should expect for a plasma with a Maxwell ian velocity distribution°

These results apply to a monoenergetic plasma. We will see

presently that for the case of a plasma with a Maxwell ian velocity
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distribution. The screening equations will lead to e'igenvalue solutions

and eigen value conditions on the parameters. It should be noted_ how-

ever_ that a monoenergetic plasma is not physically unrealistic. It is

possible to imagine experimental arrangements for producing a monoener-

getic plasma. In any cas% the eigenvalue conditions'definitely do not

arfse from physically unreal izable assumptions concerning:the velocity

distribution of the constituents.

C. Solution for a plasma with a Maxwellian velocity distribution.

We can extend the above treatment to the case of a plasma with a Max-

wel]ian velocity distribution, Equation (3,15) gives the expression

for the equilibrium ion density for a monoenergetic plasma, The compar-

able expression for the case of a Maxweiiian velocity distribution can

be obtained by integrating the product of Eq. (3 15) and the appropriate

expression for the velocity distribution dn/du over all velocities

a llowabl e,

If oo { Pc_ (i+tlc/U)]_] dnNpa = _ (1 + _/U) _ i + [1 - p_ (I+I_/U) _u du (3.42)
o

The appropriate distribution function dn/du is

dn J u2e-C_u2
du (3.

where C_ : m/2kT_ which gives the fraction of the ions that will have

initial speeds in the range u to u + du.

For a negatively charged body 3 the expressions for the ion and

electron densities will be:

" ( ]If _/U)_ A+ _" dnn+ = _ (1 - 1 + [i - pZ (l - t)/U) ] _'u du (3.44)
o



CHAPTER IV

THE SELF-CONSISTENT FIELD CALCULATION FOR A

RAPIDLY MOVING AXIALLY SYMMETRIC CHARGED BODY

A. Discussion of the Approach. In manycases in which we wish

to know the nature of the screening of a charged body that is embedded

in a plasma, the situation is complicated by a motion of the body rel-

ative to the plasma. If the motion is slow_ i.e.j if the drift veloc-

ity relative to the plasma is small compared to the thermal velocity

of the ions_ then the problem can be treated as a perturbation on

the spherically symmetric case in which the charged body is at rest.

If_ however_ the velocity of the body_ relative to the plasma 3 is

large, then the problem becomes far more complicated and a quite dif-

ferent approach is required. We will consider this more complicated

problem in which we take the velocity of the charged body_ relative to

the plasma, to be much greater than the thermal velocity of the ions.

We assume that we have an axially symmetric negatively charged

body moving relative to the plasma with a velocity that is great

compared to the thermal velocity of the ions_ but is sma]| compared

to the thermal velocity of the electrons. We will consider only the

case of a negatively charged body. The approach that we use is capa-

ble of providing the equipotential surfaces 3 the electric field 3 the

density of the ions and electrons at every point_ the current to the

charged body_ the trajectories of the ions_ the structure of the plasma

wak% and the e]ectric drag on the body.

The accretion and density formulae obtained in Chapter I! de-

pend heavily upon the spherical symmetry of the problem. This sym-

metry makes it possible to integrate over _ and q to obtain the

-50-
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particle density without having to incorporate a functional dependence

of _ and q on the angles e and _ (in the spherical coordinates r_ e_

For the calculation of the screening of a moving body 3 it will

be necessary to follow individual particle orbits in order to calculate

the space charge density. The density of this space charge will then

be used to calculate the potential in the neighborhood of the particle's

position_ and then the potential is used to continue the orbit calcu-

lations.

If the mean velocity of the ions is much smaller than the

velocity of the charged body_ then in the coordinate system at rest

with the charged bodyj we may consider the incident ions to be

moving along the axis of symmetry. The fact that the ions do

have random thermal motions may be introduced as a later refine-

ment.

We are_ thereforej able to begin our calculations with a test

particle (or as we will find to be necessary3 a group of test particles)

moving with its velocity vector initially parallel to the axis of sym-

metry. The calculations proceed from an assumed boundary surface on

the front side on the body (for example_ a hemispherical equipotential

surface 3 _ =-0.001) as shown in Fig. (4.1). The electric field is

determined approximately by using Eq. (2.30) as in Chapter II0 We

first calculate an incremental step in the particle'str_jectory_

then the resulting density at the new position on the trajectory_

and the new values of the potential and the electric fields°



-52-

This procedure is repeated at each step along the trajectory. The

result is that we are able to use this technique to "trace out" the

electric field and the equipotential surfaces. The method is

straightforward enough as long as the successive ion trajectories

do not intersect. When the trajectories of the test particles do

intersect3 a more complicated procedure must be used as we will see

1 ater.

With this obJective in mind_ we will derive the expressions

necessary for following the particle trajectories and for solving

the Poisson equation.

It will be found necessary to employ several particles lying

in a neighborhood_following their trajectories in order to obtain

all the information needed in the trajectory calculations. That is

to say_ if we were to try to solve for the trajectory of a single

partlcle_ using only the information derivable from following

one trajectory_ then we would discover that we could not calculate

the density of ions in the neighborhood of this particle nor would we

have the necessary information regarding the direction and variation

of the electric field in the neighborhood of the test particle, In

order to obtain this information_ we will follow four test particles

simultaneously. A comparison of the positions of test particles 1 and

2 or of test particles 3 and 4 can be used to obtain the ion density;

the comparison also yields the direction of the electric field. The

comparison of the electric field vector obtained for particles ] and

2 with that for particles 3 and 4 will yield the rate of change of

the electric field vector in the neighborhood of the particles

(later we will refer to the angle 133 which is the angle between the

normal to the equipotential surface and the radius vector_ and the
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derivative of B with respect to g along an equipotential surface).

This information could be obtained using only three test particles

in the group; howevers since the separation between these particles

cannot be reduced below certain practical limits3 the accuracy that

can be achieved using only three particles might not be sufficient.

In the approach to the problem that is made hares the boundary

conditions are placed on a surface outside the bodys rather than being

specified for the surface of the charged body. The shape of the charged

body is obtained as a result of the calculations, if the surface of

the body is a conductor_ then the surface of the body will be an equi-

potential surface. The charged body wi]l merely be disignated as one

of the equipotentiai surfaces. If there exists a pericritical surface 3

so that the ions are accreted toward the origin and do not reemerge_

then any equipotential surface lying completely inside the pericritical

surface can be considered as the surface of a charged body. At the

surface of a body the ions are assumed to be neutralized and those

equipotentiai surfaces shown inside the body are superf]uous.

If_ on the other hand s the equipotential surface lies outside

this pericritical surface_ then a different procedure is required to

take care of those trajectories that emerge from the equipotential

surface corresponding to the body, First of a]l_ the trajectories are

terminated where they first encounter the equipotential surface

corresponding to the body. Secondiy_ since these particles will

not reemerge from the body_ there will be a space devoid of space

charge and of trace trajectories. The equipotentiaIs in this

space must be recalculated using _7_ _ = Oo The boundary condi-

tions must be taken from the trajectories that bound the empty space.
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One can also use trajectories to trace out the field if the ion and

electron densities are set to zero,

If we desire a solution for a body of a particular shape_ the

shape and position of the boundary surface must be selected through

a process of trial and error or 3 if sufficient data has been com-

piled_ by the extrapolation of previous results to obtain a satis-

factory boundary surface,

Of course there exists the possibility that a particular

boundary cannot lead to a real solution in certain areas of the

space. For example 3 if we assume the boundary surface to be at

a potential of _o_ and hemispheric with a radius of curvature Po3

it may be found impossible to obtain self-consistent traces inside

a certain region 2 say_ with a radius Pl, This does not mean that

the technique fails_ but rather that no charged body of any given

shape lying entirely with a radius Pl can give rise to a hemi-
/

spherical equipotential surface of radius Po and potential _o with

all the other conditions of streaming velocity_ etc. also applying.

If the trajectory of a test particle crosses the axis of sym-

metry 3 a new difficulty arises. We then have the problem of test

particle trajectories crossing each others path requiring us to sum the

density contribution from both groups of particles in order to find

the total charge density at that point and the resulting electric

fields. The problem is actually 0nly one of computational complica-

tions 3 so that we need merely indicate the computational procedure to

use whenever we wish to solve the screening problem in a region in

which the test particle trajectories intersect.

In Fig, (4.2)_ we have drawn the trajectory of the first
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particle to cross the axis of symmetry at point A. The particle

is assumed reflected here and its trajectory is extended to point B.

A second trajectory is computed starting from the initial boundary

surface and is extended to point B also. Here the sum of the den-

sities of the first and second trajectories can be obtained. Further-

more s the sum can be extrapolated for the neighborhood of the point B.

The trajectory from A to B can now be accurately computed. In Fig.

(4.3a)j we see that the second trajectory has been extended to point

C using the extrapolated value of the total charge density obtained

at point B. In Fig. (4.3b) 3 a third trajectory is being computed

beginning at the initial boundary surface and intersecting at the

approximate positions E and D. At Ds a new extrapo]ation expression

is obtained and used to correctly compute the segment of the first

particles trajectory from B to D. At E an extrapolation can be

made to yield the segments D E and C E. The third trajectory can

then be extended to F and reflected. This procedure can be continued

until the entire space is traced out.

Since the technique would require considerable computation s

it is at present beyond our scope. For this reason s it will not be

employed in this paper. This should not be taken to mean that the

author does not consider the results in such regions to be important.

Such results s when they are obtained s will be quite valuable to the

understanding of the structure of the wake of a charged body moving

in a plasma.

B. Validity of the approach. We must consider Ehe validity of

the solution to a screening problem that is obtained by the above

approach in which test particles are used to _atrace out _' the electric
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and potential fields," It might appear that a solution could not

be obtained by a procedure in which a particle (or as will actually be

the case, a group of particles) is followed along its path tracing out

the field without any consideration of what is going on anywhere else

in the field except in the immediate neighborhood of the particle.

To answer the question 3 let us consider the uniqueness theorem

for electrostatiCSo This theorem states essentially that the boundary

conditions in an electrostatics problem will uniquely determine the

solution within the boundary, if the charge distribution within the

boundary is known. Let us consider two closed equipotentJal surfaces,

one inside the other, separated by a very small distance. If the

boundary conditions are specified on the outer surface, then the

distance to the inner equipotential surface at any point can be

determined simply from a knowledge of the charge density between the

two surfaces. To do this, we need know nothing of the distribution

of the charge within the inner surface. This fact is obvious either

from the uniqueness theorem or, more simply, from the Faraday "Ice

Pail" experiments.

These considerations show that it is quite satisfactory to

begin on a boundary surface and calculate with the knowledge of the

particle trajectories from one surface to the next until the entire

region has been calculated down to the surface of the charged body.

However, are we justified or is it possible to do this piecemeal,

by tracing out a small region at a time along particle trajectories?

To answer this question, consider the Gauss Flux Theorem for

the closed surface shown in Fig. (4.4)° We can write

/S Eds "Z EzdS +fS E_dS +f EsdS +fS E4dS = q¢o (4.1)
Sz 2 Ss 4
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If $3 and $4 are perpendicular to the equipotential surfaces

Sz and S23 Es and E4 will be zero. This will allow us to write for

Eq. (4.1)

fS E_dS = ¢_°° -_ EldS (4.2)
2 $1

where E z is specified on the boundary surface $z. We see that if we

know the shape of the initial boundary surface Sz_ and the value of

the electric field on that surfac% and if _.:e perform our calculations

from one equipotential surface to the next_ the values of the electric

field on a neighboring equipotential surface can be calculated from

a knowledge of the space charge between these two surfaces. This

process can be performed from one equipotential surface to the next

so as to trace out a section of the electric field without a knowledge

of the rest of the field other than that it must be consistent every-

where with the traced out section. The conditions specified here will

be met in the procedure and the equations used to solve screening

p rob 1eros.



CHAPTER V J

THE DENSITY OF IONS AND ELECTRONS IN AN AXIALLY

SYMMETRIC POTENTIAL FIELD FOR A RAPIDLY MOVING CHARGED BODY

A. The ion density N+. Assume that we have a negatively

charged body moving rapidly through a plasma in which the relative

velocity u between the body and the plasma is large compared to

the velocity of the ions_ but small compared to the velocity of the

electrons. In a frame of reference at rest with respect to the charged

body3 the ions may be considered to be approaching the body with a

velocity u parallel to the axis of symmetry and with impact parameter

q (see Fig. (5.1)).

The accretion of particles through a ring element of area

2EqZ_q in a plane perpendicular to the axis of symmetryj L_A_ is

Z_A = 2 _q_q No U (5.l)

where No is the ambient density of ions. Now, at any later momentj

the density N of these ions can be specified if we know the flux J

of the particles at that time and if we know their velocity v:

N = J/v • (5.2)

The flux can be specified in terms of the component of the ring sur-

face element _S through which these particles pass at some later

position in space which is perpendicular to the velocity vector of

the particles at that position in space. We can then write for the

flux J:

J = z_l_s (5.3)

In order to evaluate _S let us consider Fig. (5.2) which shows

the section of the equipotential surface which test particles coming
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from Z_l cross.

velocity vector of the particles is

AS = 2 Trr sin gz_

(r, g) being the coordinates of the particles.

The projection of this surface perpendicular to the

(5.4)

The angle o_ is the

angle between the radius vector r and the velocity vector v. The

angle 15 is the angle between the radius vector and the normal to the

equipotential surface (15 is positive in the counterclock-wise direc-

tion). The angle Z_@2p is the ang]e between two particle trajectory

intersections with the equipotentia] surface. The value of Z3_ in

the limit as A@2p approaches zero is

Z3_ =' rAg2p (1 + tan 2 15)½ cos (CZ + 15) = rZ3Jg2p cos (C_ + 13)/cos 15

(5.5)

Thus, substituting this expression for Z2_ into Eq. (5.4) for AS we

have

AS = 2 rrr2 sin g Agep COS (C_ + 15)Icos 15 . (5.6)

Thus we have for the flux J on substituting Eq. (5.6) and Eq. (5.1)

into Eq. (5.3)

clAq No U cos _ (5.7)
J : r 2 Ag2p sin g cos(o_ + _3)

and for the ion density N+ we will, have

N+-- clZ2RNO cos _ , (5.8)

r 2 ( 1 + _/U) _ Z_g2p s i n g cos ( C_ + 15)

since v/u = (1 + _/U) "_. In terms of the angle subtended by Aq we

have

s in go = q/ro

cos go Z_go = ZhCl/ro

(5.9)

(5.1o)
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Writing Ago = (L_e2p) o to emphasize the definition of the quantityj we

have on substituting from Ecls. '(5.9) and (5,10) into Eq.' (:5.8):

N+_

n_- n+_
No

ro 2 sin go cos go (Ag_p) o cos 13
[ ,,

r2 (I + _/U) "_ sin e (Z_2p) cos (cz + 15)
• (5._)

Particular care must be exercised in the use of Eq. (5.11) ,if e +

approaches _/2. ,' ,: ', , ;,

Since we intend to use numerical methods to evaluate n+ and

since in that evaluation Ag_p will be finit% the derivation of Z_

which resulted in Eq. (5.5) is not satisfactory everywhere. We

derive below the correct expression which takes into account the

finite value of L_B2p, the angular separation between the test

particles.

Consider Fig. (5.3). Here we show a finite L_g2p3 which gives

the angular separation between the test particles A and B. Since Z_

is finite, the variations in g between A and B must be included. For

a differential element of Z3_, d_, we have that

d_ ,. dS Icos [(o_+ t3) - _i]l (5.12)

Now we see that

dS = r d(Aei) I(1 + tan 2 15);_1 = r d(Aei)/Ico$ _1 , (5._3)

and thus on integrating d_ from 0 to z3_ and d(_@ i) from 0 to _e2p,

we have

2g@2p

0

cos [(_+ _) - aei]ld(Aei) . (5._4)

Thus Z2_ becomes

Z3_ " Icosr B [sin (_ + B) - sin (_ + B- _2p)]l • (5.15)
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However, if o_ + 13 > Ir/2, then particle A of Fig. (5.3) will be on the

opposite side of B. We will then have to use the expression

z_g_p

; r= Icos
o

cos ÷ m ÷ z g,]l d(z O,)

to replace Eq. (5.]4); thus, when 0_+ 13> TF/2

= Icor b [sin (cx + 13) - sin ((x . 15 + Z:gg2p)]I

Using Eqs. (5.15) and (5.17) for Z_, n+ becomes

with

(5.16)

• (5.=7)

n+ ==
I r°2 sin go cos go cos {3 (z_g2p) o I

r 2 (1 + 6/U) "_ sing [sin (o_+ 13) - sin (c_+ IB-T-.Z_g2p) ]

( - ) for o_ + 13<_ n'/2

( + ) for CX + 13 > E/2

As the angle g approaches 0 or /T the density of ions, according to

Eq. (5.18) approaches infinity. This is the result of our neglect

of the thermal velocities of the screening particles which in reality

will prevent the ions from converging toward the axis of symmetry;

i.e. although g may reach g = ii"along some of the ion trajectories 3
i

most of the ions will only approach ]7.

Let us now obtain a correction to Eq. (5.18) (specifically sin g)

which will introduce the thermal velocities as an approximate cor-

rection to the density calculations in the neighborhood of the

axis. Consider a typical ion that is approaching the charged body

but is still "outside" the field of the body. Its velocity relative

to the charged body will be the vectorial sum ofu (the vector

velocity between the plasma and the charged body) and _ the thermal

velocity of the ion. In Fig. (5.4) we show the sum of w and u= uz

(where u is the scalar magnitude of u and =z is the unit vector along



-62-

the axis of symmetry of the coordinate system. The three unit vectors

for this coordinate system are _3 _ _.) The components of _ are also

shown.

Now the fact that n+ is not infinite for trajectories crossing

the z axis is due only to wg_ the Q component of the thermal veloci-

ties of the ions. The components w and w contribute only higher
r z

order corrections to the density calculations. But how is it that the

wg component of the ion velocity results in a reduction in the density

near the axis? Consider again Fig. (5.4) and assume that the thermal

velocities are small compared to _ (i.e. 3 kT << U). In order to cal-

culate n+ to first order we may set _ + _= _ + wg _=;_!. With a

velocity of _' the axis of symmetry for the particle will be shifted

from the coordinate axis z. A particle whose thermal velocity in the

g direction is wg will pass no closer to the z coordinate axis than

pwg/u (where wg << u). Thus no particle with w e _ u(_ - e) can reach

a coordinate point p_ g (g = 0 being on the forward side of the

body). We_ therefore_ obtain the first order correction to the den-

sity equations by excluding all such particles.

If kT << U3 the density contribution of each particle reaching

pj G will be the same to first order. The den,sity will be reduced in

proportion to the reduction in the number of particles reaching p_ g.

The density is thus reduced by a factor F.

F = i - 5(we') (5.19)

where 8(we') is the fraction of particles with w e greater than w e '

we' = u(_ - 8) • (5,20)

If we assume the ambient ions to have a Maxwellian velocity
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distribution, then the function 8(We') is given by

rowe2

_ -X 25(w e') = m dwe = 2B e

We. _ I

where

dx (5.21)

x' = S wga (5.22)

F becomes, using Eq. (5.21) in (5.]9)

-X 2
F= ] -2-- e dx . (5.23)

F 2_ we'

Using Eq. (5.20) in (5.23) we have

oo

_U "x2

F = ] - 2__. e dx • (5.24)

/kT (IT-g)

Using the conditions of Eq. (5.24), the expression for n+3 Eq. (5.18),

will become

n+ = I sin g,O cos gQ cos 13 (AB2o) o t
r _ (1 + _}/U) "_ [sin (a+ (3) - sin (c_+ 13_ Ae2p)] sin e

-X 2' [! ",/TF_ e
/kT (it-g)

dx ] (5.25)

with ( - ) for o(+ (5 <Tr/2

( + ) for (z+ 13 > 1T/2

.... ;=re go = 0 for any of the test part. icles) _:....

(5.25) must be supplemented by the expression

n+ = r'02 (Z3920) o

r2 (I + _/u)_ ne2p

(5.1i:_i and

(5.26)
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This results from the observation that for a particle initially moving

along the axis of symmetry_ for which 15 must be zero, o_ must always

be zero as well. Thus, the value of g will also remain zero. One,

therefor% can take the limit of Eq. (5.18), which yields Eq. (5.26).

Finally, note that Eqs. (5.18), (5.25), and (5.26) can be

rendered in non-dimensional form merely by substituting p_ Po and _ for

r, r o and O/U.

B. The electron density N=. The density of the electrons in

the repulsive electric field can be obtained from general considera-

tions alone. In the case of a stationary gas of non-interactin 9

particles in which the particles are subject to an external force, the

Maxwell-Boltzmannstatistics derivation using Lagrange multipliers

yields for the distribution function in phase space _4

N e-1OI/kT
deN = _--

e

dx dy dz (2-_kT)'_ e "mv2/2kT

where V is an integral over a volume V
e

dvx dv_/ dv z

(5.27)

dx dy dz (5.28)

x, y_ z, Vx3 Vy, v z

particular mass.

are the phase space coordinates and m is the

If one integrates Eq. (5.27) over all Vx, Vy, Vz, one obtains

N = d.._N= N__ e-1OI/kT (5.29)
- dV V

e

Since Ve includes all space

= All particles in space _ N O
V All space

e

, (5.3o)
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we have

N = Noe'l_l/km (5•31)

There are3 however, certain considerations that need more care-

ful consideration. The integral over all Vx, Vy, Vz, is only allowable

if all values are permitted• If the field is attractive, then there

will be a cone of angles for the velocity vectors specified by energy

and angular momentum considerations that are allowable. It is impos-

sible for a particle to arrive at this particular point in space with

a velocity vector lying outside this cone of angles. Thus, under

these conditions, the integration of Eq. (5.27) will not yield Eq.

(5.29)• In general, the result will be quite complicated and may de-

pend upon the paths of the particles. It is this fact which dictated

the approach in section A of this chapter for the derivation of the

ion density.

When the field is repulsive everywhere in space, then the

allowed cone of velocity vectors fills the whole velocity space

(i e all values of v are permitted). Thus, for a specu-
• . Vx, Vy, z

larly reflecting, negatively charged body, the electrons will have

a density at any point in space given by Eq. (5.3]) if one neglects

their drift velocity•

To allow for the drift of the electron gas relative to the

charged body, transform the coordinate vx into vx -Us, in Eq. (5.27)

where u is the drift velocity of the gas relative to the body
s

N I_}l/km
den -- _- e-

e

• e×p [(

m
dx dy dz(2 T)

l
v x - Us)2 + Vy _ + Vz2]_dVx dvy dVz

J
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If we choose a position in space far removed from the charged

body and if the potential energy for the electrons at that point is

_,then we would obtain upon integrating £q. (5.32) over all allowable

v :
Vx3 Vy, z

n_ = e l_llkT( _ e(-m/2kl) [(vx - Us)a + Vy z

•dv dv dv = e_l_l/kTli (5.33)
x y z

If, however_ the charged body is very large and nearby and if elec-

trons are specu]arly reflected off the body, then along the axis of

the body, we can write

2-- kT) 2 + v 2)n_ =, e"l_}l/kT ( '} [ e('m/2kT)(Vy z

U
5

• [2jF.,.,. e('m/2kT)(Vx " Us)2 dVx ] '

dVy dv z ]

(5.34)

The factor 2 before the integral over v is the return factor q.
X

The limits on the integral over vx are from - _ to u s since

any electron with a higher velocity will run away from the charged

body on the frontsid% and on the back side it is prevented from

reaching any point on the frontside due to the presence of the

charged body. If we transform coordinates in Eq. (5.34) so that

w = vx - us ,we obtain:

e-I_}l/kT m _ _'Le(-m/2kT)(v 2 + v 2). = (2-TCy)[ y zn

o

• [2Fe "mw_/2kT dw] = e -IJ_I/kT @

dVy dv z ]

(5.35)

We again, have obtained the same simple relation for n
m

If the electrons are not reflected from the surface of the
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charged body, then the return factor will be Q- 2 only for those

electrons that do not reach the surface of the body; i.e., for

particles of velocity v wi_h_mv 2 < I_sl ' For those that reach theX X

surface Q= l. In this case, Eq. (3.34), which already excludes all

particles that do not approach the surface of the body, becomes

#USe("- e'l_l/kT(_--_-T_) _ [2 m/2kT) ( v x - Us)2 dvn
- _ _ X

-v_

_. e(_m/2kT) ( Vx Us) 2. - dVx]

where v_ is

= (21 sl/m)

and _} is the potential (energy) of the surface.

substitution

2m_kT us )(D " (V x -

and replace u with v = u
S S S

coordinate) in Eq. (5.36), we obtain

f- ]-- e do)

n. = e"l¢}l/kT [i _ (v_+v s )_-/2kT

(5.36)

(5.37)

If we make the

(5.38)

cos eo (@o is the initial polar angle

] (5.39)

Equation (5.39) holds only if the radii of curvature of the body and

is not even valid for an uncharged body, except near the surface.

potential is assumed to vary in only one dimension# the expression

The validity of Eq. (5.39) is seriously limited, however, since the

our case).

A similar expression has been obtained by Lundgren and Chang 7.

where m is the mass of the repelled particle (the electronic mass in
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of the equipotential surface _I are large compared with the distance

between these two surfaces.

If u is small compared to the mean velocity of the electrons,
s

the lower limit on the integral in Eq. (5.39) becomes simply Jl_sl/kT.

If in addition, l_sl >> kT, Eq. (5.39) will become

n = e-l I/kT I (5.40)
m

as before (Eqs. (5.35), (5.33), (5.31)).

For the problems that we will investigate numerically_ u s is

small compared with the mean velocity of the electrons and we will

therefore neglect it. There is also some experimental evidence that

10sl >> kT_ at least for some cases. We will, therefore, use Eq. (5.40)

for the electron density. In order to make use of Eq. (5.39) one

must concentrate on a specific problem. The use of Eq. (5.39) would

greatly increase the computation time and is not essential to the

present purposes.

Although we obtained Eq. (5.40) from Eq. (5.39) by assuming

that IJ_sl >> kT, this condition is effectively satisfied even if we

set _}s = _e' the equilibrium value of the potential., For J}s = £)e

the error in the calculation of n+ - n_ using Eq. (5.40) as compared

with us=ng Eq. (5.39) will be at most about l_.



CHAPTERVl

OTHEREQUATIONSFORFOLLOWINGTRAJECTORIES

A. Calculation of new orbit coordinates (P3 9). The solution

of screening problems requires only the Poisson equation and expres-

sions for the ion and electron densities. In Chapter V we obtained

expressions for the ion and electron densities which allow us to

compute the electric field along test particle trajectories. We must_

now_ obtain equations for particle trajectories. In addition we will

need an expression for the normal to the equipotential surfac% and

we must express the Poisson equation in convenient coordinates.

We consider first the question of trajectory calculations.

The trajectory is obtained by 'Jupdatin9" the test particle coordinates

as the test particle traces out the field. The current coordinate

position of a particle can be determined by extrapolating its tra-

jectory using the current value of % the pitch angle of the parti-

cle's velocity vector. In Fig. (6.1), the parameters for this

extrapolation are indicated. We assume initially that the particle

is located at rl, 9 z. An extrapo]ation of the particle coordinates

by a distance Z_e parallel to the velocity vector will bring the par-

ticle to r2_ 92. By trigonometric relations, we obtain for r2

r2 = [rz 2 + (_e) 2 - 2rz Ae cos CZ]:_ (6.1)

and for e2:

92 = 9:L + &9 (6.2)

where

sin A9 = z_e sin C_ . (6.3)
r2
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If rl _) ge, we can simplify Eq. (6.1) to

r2- rl _i + (_e/rl) _ - 2_e cos c_/rl _ rl - _e cos c_ . (6.4)

The equation for Ag, equation (6.3), can be written approximately as

Z_g _ _e sin c_ • (6.5)
r2

Approximate expressions such as Eqs. (6.4) and(6.5) can be used to

reduce the computation time without affecting significantly the ac-

curacy of the calculations. Equations (6.4) and (6.5) can be written

in a nondimensional form by substituting P2 for r2_ Pl for rz, and A_

for Ae.

B. Calculation of the particle's pitch anqle c_. In Fig. (6.2),

we have shown the position of a particle at two points along its

trajectory separated by the incremental angle Ag. The value of the

ang]es between the velocity vectors v 1 and v2 and the respective

radius vectors are 0_1 and c_2. The angle A 7 represents the angular

change from a straight line trajectory (positive in the direction of

In terms of these quantities_ we have the geometric

c_2 - Z_ 7 = 0_I + Ae . (6.6)

If we consider that the change in IB will enter only as a higher order

termx we may consider the equipotential surfaces to be parallel at

these two points. Thus, the components of the velocity vectors normal

to the electric field Will not be affected in going from P to Q. We,

therefore, have

vl sin (_1 + IB1) = v2 sin (_2 + Bz - Ag) . (6.7)

increasing c_).

rel at ion
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Substituting from Eq. (6.6) for o(2 we obtain

v_ sin (0(I + 131) = sin (o_I + 131) cos A 7 + cos (o(I + 131) sin Z_ 7
v2

sin (C_:t+ 131) + cos (0(I + 131) Z_ 7 . (6.8)

Thus A 7 becomes

Z_ 7 = (v__. I) tan (0(1 + 131) (6.9)
v2

Substituting from Eq. (6.9) into Eq. (6.6) yields

0(2 = 0(I + Z_@ - (I - _'_2) tan (0(I + 131) . (6.10)

Substituting for v z and vm in terms of I_1, _2 and U, we have

0(2= 0(I+Ae- [I - _]
_I + I_2/U tan (C_z + 131) • (6.11)

C. Calculation of _ from the coordinates of two test particles.

The angle between the normal to the equ:Ipotential surface and the

radius vector plays an important part in the expression for the ion

density and in the second derivative of the potential. In the cal-

culational procedure which we have adopted_ the quantity 13 will be

determined by following a pair of test particles so that their co-

ordinate positions on the same equipotential surface can be used to

evaluate 13. It is possible to do this using the same pair of test

particles that are used to obtain _2p. The equation for 13 in terms

of the coordinate positions rl, 81 and r_3 @_ is immediately obtain-

able from Fig. (6.3).

13 = arc tan (rl - r2)r2 (o2 - (6.12)

where 13 is positive in the direction shown in Fig. (6.3).
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Do

simplicity

potential fields using Poisson's equation

2_= n. -n+

The transformation of the Lapiacian. In order to achieve

in the point by point computations of the electric and

(6.13)

(6.14)

let us consider the form ofV 2 _ expressed in terms of local coordi-

nates for which the electric field is parallel to the radius vector.

The geometric relationship of these local coordinates k, ®, _ to the

coordinates p, @, _ are shown for a constant _ plane in Fig. (6.4).

In addition, we will introduce the coordinates k'j®_ _ for which _'

is parallel to _ but the center of these coordinates is located at

the center of curvature of the equipotential surface.

Since we will be following several particle trajectories at

the same time and will be incrementing their paths from equipotential

surface to equipotential surface, it will be convenient to express

the electric field vector in terms of local coordinates. For an

appropriate choice of local coordinates (k'_ 8') the variation in

along _ = constant (in the p, 8 coordinates) will vanish (in the

k', ®' coordinates).

These coordinates will allow us to update the trajectory of

the ions from one point to the next in terms of the coordinate p, e

and to update the electric and potential fields in the coordinates

k', 0'' The choice of the k', 8' coordinates makes transformations

between the two systems quite straightforward as shown below.

The Laplacianv2_ expressed in terms of the coordinates

_, ®, _ is

+ , ,;k"_ sin _) _-_ (sin _) + _.z sin2 _ •
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Since we have axial symmetry with respect to I_, the last term can be

dropped. According to Fig. (6.4), we can express k in terms of ID by:

_" = ---P----= P (6 15)
sin g sin ® sin (g + 13)

Thus Eq. (6.14) becomes

_2_ __ _ + + P_ sin_ gp sin ft

(6._6)

Now consider the variation of the electric field along an

equipotential surface (which by definition is concentric with k').

Since the electric field is perpendicular to the equipotential

surface at all points, _1//_®, = 0 in the neighborhood of the point

and, also, _/_®-- O.

Let us next consider the value of _2_//_®2. This of course, is

the rate at which _/_® varies as ® increases. Since there is no

"angle" component of the electric field in the coordinates k'3 ®'

(i.e. _@/_e' = 0), the "angle" component of the electric field in

the coordinates k, ® ( i.e. _/_G) is simply a component of _//_k'.

Thus, as shown in Fig. (6.5), the value of _/_® at point 2 is

given by:

: sin a7 ( )_

Now (_/_k')2 is given by

(c3¢/c3;,,.')a = (,::31ffS,x') + _ ( )8®' , (6.18)

so that Eq. (6.17) gives

= X sin _7[( )l+ 8_'_'( ) _l'] . (6.19)

Since _1//_® = 0 at point I, we obtain for ;52_/c]_7)'2
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To obtain 87/F:_ consider the triangle ABC in Fig. (6.5). We have:

(;_- k') sin 5e :' k' sin 57

so that

57 X I
r:_ = k'_" -

To obtain ;k/k', we see from Fig. (6.6) that

terms of p by

k'A®' cos 13 = pz3a

(6.2|)

(6.22)

k' can be expressed in

(6.23)

From Fig. (6.4) we see that _' : g + 15i a variation along an equi-

potential surface gives

z3_' :Z_I5 + Z_ (6.24)

Substituting Eq. (6.24) forA(_' and Eq. (6.15) for p into Eq. (6.23)

we have

;k. sin g cos 15k-'T: sin (g + 15) (l + ) (6.25)

Since the variations in Eq. (6.23) and (6.24) are along an equipoten-

tial surface, Eq. (6.25) becomes in the limit as Z_B _ 0

k sin g cos B _.

k"-i" : sin (8 + _) [! + (_8")_]

If we now use Eq. (6.26) for k/k' in Eq. (6.22) and substitute the

resulting expression into Eq. (6.20) we obtain for _2_/_

(6.26)

: k in g cos _ [l + (_--_8) - l (_k,)z
in (e+ 13)

Since the coordinates k and _.' are always parallel, we, have that
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and thus

sin (e + _) (--
(6.29)

If we substitute Eq. (6.29) for _2_//_(_r_into Eq. (6.16)_ we obtain

V2_ " = + 1 +
P sin g sin (g + IB)

(6.30)

It must be remembered that Eq. (6.30) does not expressV2_/ in

terms of coordinates moving with the particles, but merely represents

a geometric relationship between the coordinates p_ g and k.,

which allows us to deal with the total electric field intensity (actu-

ally the electric force on a charge) c_/_k rather than the components

c_/_p and ()_//pc_9. Since the electric field must be invariant under

coordinate transformations, it is immaterial what coordinates are

chosenl Eq. (6.30) is employed only because it expresses_2_ in the

most convenient terms for our purposes.

Equation (6.30) will be used for "updating" the electric field.

Because of the particular choice of coordinates used to calculate

V2_j the electric field will lie along the radius vector. The updat-

ing equation is then_ simplyx

(_k)2 = (_-_)I + (_) Z_k (6.31)
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GROWTH OF ERRORS IN NUMERICAL CALCULATIONS

Although some special cases of the screening problem can be

treated by analytical means3 complete solutions can be obtained only

by recourse to digital computers3 as already mentioned. However_ the

numerical calculations of a solution is of practical necessity

limited in accuracy. Since single precision floating point calcula-

tions on an IBM 70903 as employed in our calculations 3 use 27 bit

mantissas and double precision 54 bitsi each single precision cal-

culation will involve an error in the 9th digit and each double

precision calculation will involve an error in the 17th digit. Each

step in the integration of the screening equations (see Chapters V

and Vl) involves the calculation of various quantities in terms of

their values on the previous step. It should appear obvious that

a small error introduced early in the trajectory calculations can

become quite significant at a later point. There exists also the

possibility that the error will not become important.

It is quite possible to calculate whether the error involved

in updating a particular quantity will grow or be removed; whether

the series of such errors is divergent or convergent. The procedure

for deriving the criterion is simple but may require considerable

effort for involved equations, such as we have. In most cases it

is simplest merely to experiment with various parameters)such as the

step size and or particle separation_to see if the results depend

upon their value. In some cases3 however 3 such a trial and error

procedure is not satisfactory due to the large amount of computa-

tiontime that may be involved. There is, also 3 the danger that the
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erratic results obtained from the computations arise from other short-

comings. For these reasons, a formulation of the behavior of the

errors will be obtained here.

The procedure involved is simply to assume that in the step-

by-step calculations a variable X is updated according to the relation

Xne w = Xol d + f (Xold) (7.1)

We then assume that the true value of X is replaced by X (which in-

cludes an error 8)

X=X+B

where B is the round-off error in the value of X.

(7.2)

We thus find that

+8 =X + +f( + d)Xnew new o] d Bold Xol d Bol
(7.3)

= Xol d + Boid + f (Xol d) + f' (Xol d) Bol d • (7.4)

Thus for B we have,

anew = Bold [I + f' (X)] (7.5)

Equation (7.5) shows that if I] + f' (x) l is less than one, then any

error 81. introduced at any point in the calculations will be removed

exponentiallyl if it is greater than one, the error will grow exponent-

ially. Thus, the convergence of the series of errors can be effected

only by changing the values of the parameters in f' (X).

Early attempts at obtaining numerical solutions in the problem

of the screening of a rapidly moving charged body showed that the an-

gle _ between the normal to the equipotential surface and the radius

vector is highly unstable for small values of 8zo, the initial angle

for the first particle (i.e., near the axis). (The reader should

remember that the field is traced using four test particles divided
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into pairsj each pair is used to obtain a value of _ on the equipo-

tentiai surface. The resulting pair of values for _ is used to

obtain _/_e.)

The equation for _ for the first two particles isj from

Eq. (6.12),

= arc tan P12 - P22 (7.6)
P22 (822 - 812)

where the first subscript on P and 9 specifies:the,:part_i, dle:_and tha(isecond

subscript specifies whether the value of p and £ is for the current

step (2) or the last step (I), corresponding to the subscripts new

and old in Eqs. (7,1) through (7.5). For small values of 63 Eq. (7,6)

can be approximated by

! (_.._- 1) (7.7)=_ p22

where 5ez_ = (Be2 - ez2), the subscript 12 on 5e referring to the

first pair of particles (used to calculate _) on the current step.

If we write

and

Pi2 " PZ.I.+ Z_Oi

P22 =' P2z + Z_o2

5812 = 5811 + ASez

we can write for IBj where IB is small

where

, (7.]0)

IBnew = 15ol d + Z_6 (7. I l )

1 [_..__p2p_._ +._._(i .mu.)]z_ = 6el----_ P2_L 5(_lz P2Z
(7.12)
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If AI5 is defined to be f(15)

z_ _ f(IS) , (7.13)

then Eq. (7.11) will take the form of Eq. (7.1). We thus can write

according to Eq. (7.5)

[I + f'(_)] (7.14)
6new = Bold

Thus, we require the quantity f'(_). Let us writ% therefore

f(15) = fz " f2 + f3 (7.15)

whe re

Zko_ (7.16)
f z =" Bglz Pez

Dll >, Z_o2 (7.17)
f2 = Bgzz p21

l
fs " (Bgzl) _' ( I - .@..I.1.)p_I Z_Sg_. (7.18)

Here

quantities from step (1) (i.e., the old values).

can write for L_oI

the quantities L_ozj Z_o2 and L_Sgz are expressed in terms of the

_1 = - z_l cos o_12

so that Eq. (7.16) for fz, becomes

From Eq. (6.4), we

(7.19)

fz = - L_I, cos C_1_ (7 20)
Bgzl P2z ;

therefore_

fz' = Z2_I sin C_12
5@zz p2z _I_

From Eq. (6.11) for c_ and Eq. (6.5) for Ag we have for o_z_

0_IP-= C_11 + _ + [_ Z_ ] tan (C_zl + 6z)
P z2 2 (1 + kk)

(7.21)

(7.22)
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so that

and Eq. (_.21) for fz' becomes:

cz_1+ _I)
(7.23)

fz' : " Z_ Z_II sin 0_12
2 (I + _/)cos _ (czn+ 13z) _gn p21

( 7.24)

For f2 we hay% using Eq. (6.4) to obtain z_o2:

011 [I_12 1 _]1 COS (C_12 ar 8][)

f_ = " 8glz _i _ _22' cos (o_22 + lSz) cos C_2]
(7.25)

Thus_ for the derivative of f2 with respect to _, we can write

o_, z_, [cos (o_,_ + p_.) cos _22_
f2 : " 01z P'21_[_/22 ' cos (CZ22 + 13I) (_z2')

_/1_' cos (oc_2+ _][) cos oc2_c_
" _22 '_" cos (c_22 + _,.) 8"--_"(u/22')

. _.IP.' cos 0_2 sin (Oh2 + B1)
_22' cos (C_2_ + _) _1_

_' cos (c_][_ + (_][)
_2' cos (cz_ + I_)

[cos (_ + _z) sin _2_

- COS _ sin (_ + _1)]

+ _/,_' cos C_2_ [cos (C_Z_+ _z) sin (o_2 + 13z)
_'_, cos _ (c_22 + _)

1
- cos (_ + 13z) sin (czz_ + Bz)] ]"

From the equation for updating _'_ Eq (6.3l)_ we obtain

(7.26)

c3 (_/z_') : In+zz [tan ((zzz + l_z) " tan l_z] + [C,OS (8_ + 13z)C_l_ P zz s in gZZ

" sin (3_(IPzz + 13')] _zz'} z_z c°s (°_zz + 13z) +_n z_ n+ll

. [sin (8_, + l_) + cos_ (l + _,)] ¢11"_ Z_z sin (OCzz + 131)pzz sin gzz Pzz
./

(7.27)
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and

a .r [cos (e2_ + (31)
_'_ (_22') = ln+21 [ tan (a21 + IBz) - tan IBz] + P2z s =n 02z

sin IBI (l + IB')] _/21'_" Z_2 cos (c_2 z + (5].)
P2]. J

+_'n_2zl - n+2z - [sin (eel + IBI) + cos lSzP2z sin 02z P2z

• (I + I_')] _21'_ z_2 sin (o_2i + _i)

We also have corresponding to Eq, (7.23) for c_O_].e/c_i_

(7.28)

" _s _ 13z)a13 = - 2 (l +_) " (cz2z+
(7.29)

Thus for f2' we obtain

Pl, Z_I _cos (C_,_ * _I) cos 0_22 (tan (czzz + Bz)
fe'='Sezz pP_z_l_I22' cos (c_2p_ + l_z) [n+zz

- tan lBz) L_z cos (O_z z + l_z) - n+2z (tan (C_p_z + i_Z)

- tan IBz)" (_) Z_2 cos (_21 + ÷
_22

cos (e_ + #_)
Pzz sin Ozz

_" Z3_2 sin (o_z + (Sz)] + (-_e,)

cos c_2_ sin (o_12 _/ 151) Z_

cos ((Z_2 + IBz)2 (I + _) cos z (C_zz + iSz)

COS (C_2 + IBm)[cos (C_e_+ _Z)sin OK_ - cos o_a_
cos (_== + i_z)

• _
sin (0_ + I_:I.)] 2 (I + _V) cos 2 (CZ_z + 15z) - (_)_/e=
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cos 0_22

cos_ (c_22 + 131) [cos (czz2+ 13z) sin ((::z22+ 13z)

- cos (cz22 + 13z) sin (o_z2+ 131)] _"

Consider typical values for the variables.

_/, O(of the order of magnitude of 10-3, p _ 1_

(7.30)

Take Z_, g, 5g, _/',

_. I0-e and finally

(3 less than oz. We find that the only large terms in f2':are:

pl, z_1 cos (_IP.+ _]) cos o_ [cos (e_, + 131)
f2' = " _)@Zl P2Za_'_!/22 ' COS (C_22 + 131) P:LI sin BlZ

• atl cos (_11 + #i) _ii' - (-,-_,)
cos (e2_ 4- BI)

_22' P21 sin 821

• Z_2 cos ((::Z21 + IB1) _/21'] (7.31)

We also find that fl' as expressed in Eq. (7.2)4) is small compared to

f2' in this range of values for the variables• Considering fs we

have

1
fs " (ue):^z1'z (I - -P-_)P_az

[. _ + sin___ ''
P 12 P22 _V22'

• Z_l_.cos (c_12 + _i)] (7.32)
cos (_22 + #i)

This expression is very similar to that for f2• As we have seen_

those terms involving the derivation of cz12 and cz22_ with respect

to 13 are not as important as those for _/12' and _22'• Therefore_ we

can write for fs'_ approximately:

f3' Z_t_ cos (OG2 + lSz) sin (:Z22
= (5e_i)_"(l - _J-) •p2_ p22 _22 cos (cz22 + B1)

• [cos(e,,+B_)atl cos (_i_ + 131)_i_' - (.,._,)
Plz sin gl_ _22

cos (gp_ + I_) Z_ cos (a21 + 131) _21'] (7.33)
• P_I sin g_



-83-

Thus3 including only the largest terms:

f,(_) = L:_I cos(_12 + _,)
8elz _v_2' cos (c_22 + 81)

[(! ",_eli/p2_.) sin _22
pee 50zz

+ _ cos c_22]
[cos (e_l + 13_) _1 cos (_11 + I31)

Pzz si n gzl

• _11' - _ cos (e21 + 131)
_22' P2z sin g_l

_2 cos (_21 + 131) _21']

(7.34)

It is the sign and magnitude of this term that will ordinarily deter-

mine how fast B will accumulate errors. A further approximation in

f'(IB) in which we ignore the (1 - Pzz/Pez) sin c_2/p22 5811 term

compared with Pzz cos cz2e/p2z 2, approximate cos (cz+ IB) _ I to first

order, take _12' : _21' = _2e', and set Pzz = P2z gives

f' (13) = 5811 (sin elz
1 .) (7.35)

sin e21

From Eq. (7.5), we have

A'b.l 2 i I ]) (7.36)
5new : _)old (I + 5-81 z p_ [sin 8zz sin (ell + 6811)

If we assume that @, and 5gzz vary slowly compared to p, as will be

the case for small angles, and if we write Z3p - AI11, then

d5 Lgla[ I ] ] p_"_= 5ezz sin ezz sin' (ezz + 5ezl) (7.37)

Integrating, we obtain

5 = 60 exp [Z:_ba (
5811

or approximately

!.L)] (7.38)
sin (ezz + 5gZl) ') (p Po

i ._)]5 : 60 exp [ (P" Po

Thus, we see that the error 5 will grow exponentially.

(7.39)

For given Po
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and p._ i, e._ a given distance over which we require a valid solution 3

we can make 6 small by making L3r[1 smal]_ ezz large or 6o small. To

make L3tt,z smaller will increase proportionately the computin 9 time;

increasing 9zz_of course_ will exclude information regarding the field

near the axis of symmetry. Making 60 smaller.is equivalent to requir-

ing greater precision in the calculations_ for example by means of
I

i

°'double precision _' calculations. For larger values of Po_ the problem

becomes less acute,



CHAPTER Vlll

RESULTS OF THE NUMERICAL SOLUTION FOR THE SCREENING OF

A RAPIDLY MOVING CHARGED BODY

A. The problems treated. In Chapters V and VI we have ob-

tained the equations necessary for a numerical solution of the

screening problem. In the Poisson equation 3 Eq. (6.13)_ we will use

Eq. (5.18) for the ion density n+ in the monoenergetic case and Eq.

(5.25) in the Maxwellian velocity distribution cas% and Eq, (5.3])

for the electron density n . The Laplacian operator is re-expressed
m

in the form of Eq. (6.30). Equations (6.2), (6.4)_ (6.5) and (6.11)

will be used to follow the trajectory of the particles and Eq. (6.]2)

to calculate (B_ the angle between the radius vector and the normal

to the equipotential surface, We will write the potential in the non-

dimensional form $ = _/U and the radius as p = r/h where

h = _KIJ/4/Te_No (in cgs units)

= JEoU/e_No (in MKS units) (8.1)

Let us restate here the I imitations on the use of the above

equations for the solution of screening problems for rapidly moving

bodies. First of al]_ the shape of the body depends on the choice

of the boundary conditions. If practical considerations permit (i.e.j

available tim% etc.) one can obtain a solution for any axially

symmetric shape by making successive approximations or by trial and

error procedures. However_ this should not be confused with an

approach using successive iterations of the potential field (as

employed by Davis and HarrisZ8) •

In the solutions calculated here (see below) no effort has

-85-



-86-

been made to obtain solutions for a body of a specific shape and sur-

face potential. The problems treated have been chosen for their value

in exemplifying the procedure and yielding a general understanding of

the nature of the screening. In addition, no effort has been made here

to introduce the effects of intersectin 9 trajectories (such as ions

intersecting trajectories from the lower half plane when they cross

the axis). Their neglect_ howeverj is not an inherent limitation

of the method, but does require more elaborate caiculational tech-

niques (see Chapter IV)_ in addition_ for bodies large compared to

a l)ebye length the ion density is so low behind the body that the

neglect of intersecting trajectories is unimportant.

With these reservations let us now consider a few specific

problems. In'the case of a spherically symmetric problem of a

stationary sphere_ we incorporate the ambient density No and temper-

ature T in the potential and radius variables by using a nondimen-

sional radius. By solving the equations for various values of Po and of

_o we obtained a set of solutions that were applicable to any

specific value of No and T. In the case of a movinq body we must

also specify kT/U_.the ratio of the thermal energy of the electrons

to the kinetic energy of the ions. In the numerical calculation

given here let us set kT/U = O.O31812_ a value corresponding to an

electron temperature of 15OO ° K and a relative velocity of 7km/sec

between the charged body and a plasma of singly ionized oxygen.

These calculations thus correspond to the motion of a satellite

through the earth's upper atmosphere.

As in the screening of a stationary sphere (Chapter I and II)

we must begin at a distance from the charged body po with a potential
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_o. If Po is sufficiently large, we can establish with some cer-

tainty the boundary conditions. We will use here for the boundary

a hemisphere axially symmetric and opening to the rear on which we

have for the potential _/o = O.OOl; we will take, variously, Po = 5,

lO, 20 for the radius of this boundary surface. For the value of _/'

p

on the boundary surface we again use Eq. (2.30).

B. Results of the numerical calculations and general observa-

tions. In Figs. (8.1), (8.2), and (8.3) we show plots of trajectories

and equipotential surfaces where Po = 5, lOj 20, respectively.

Figures (8.4), (8.5) and (8.6) show the corresponding equidensity

curves. In these calculations we have assumed the ions to be with-

out any significant thermal motions so that the velocity vector of

each ion will be parallel to the axis of symmetry.

The trajectories and equipotential curves shown in Figs. (8.l),

(8.2)_ and (8.3) are superficially quite what might be expected,

except that the trajectories turn more directly toward the body and

the sheath is thicker than might have been thought. The slow

spatial variation of the potential Shows that the Debye length is

not a satisfactory indicator of the sheath thickness. The tail-like

appearance of the equipotential curves behind the body is due

primarily to the convergence of ions toward the axis. We will show
l

later that a Maxwellian velocity distribution will remove these tail-

like areas except for small bodies.

The most interesting information is shown in the equidensity

curves, Figs. (8.4), (8.5)_ and (8.6). We find that there is no

rise in the density as particles enter the field but rather, a drop

in the density. This drop in ion density results from the acceleration
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of the particles by the electric field. Near the axis on the front

of the body the density drops steadily as the ions approach the body.

Slightly further from the front there is a trough in the equidensity

surface caused by the convergence of the ion trajectories toward the

origin. On the side of the body the density becomes quite low giving

a wide, low density trough. Behind this position lies a point of minimum

density_ the minimum, therefore, does not lie directly behind the

body. Near the axis behind the body the density becomes quite large,

due to the convergence of the trajectories toward the axis. This

high density, of course, arises from the neglect of the ions' thermal

mot ion.

Figures (8.7), (8.8), and (8.9) give the trajectories and equi-

potential curves obtained using a Maxwellian velocity distribution

for the ambient ions_ all other parameters are the same as in Figs.

(8.]) through (8.6). These calculations assume that the ion tempera-

ture equals the electron temperature in the ambient plasma, although

such an assumption is not necessary. The resulting equipotential

surfaces are much more nearly spherical.

Figures (8.10)_ (8.li), and (8.12) show the equidensity sur-

faces corresponding respectively, to the trajectory and equipotential

curves of Fig. (8.7) 3 (8.8), and (8.9). The two most interesting

changes are: the trough in the equidensity surface extends across

the axis behind the body, with the trough nearly encircling the body,

and the density of particles crossing the axis behind the body no

longer reaches the unduly high values found in Figs. (8._), (8.5),

and (8.6). Nevertheless_ there is a considerable concentration for

small bodies (of about one Debye length) with large potentials, as
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shown in Fig. (8.10). For large bodies the density along the axis

is small. This shows that the intersection of trajectories becomes

fairly unimportant for large bodies.

The equidensity curves computed by Davis and Harris&Bshow some

similarity with our results. They show a large concentration of ions

near the axis (the ions are cold) and a depression in the equidensity

surface behind and to the side of the body. However, in their work

there is no drop in ion dens ity_a!on 9 the front of the body but

rather a slight increase in density before the density drops. Also,

there is no trough in the equidensity surface although it must exist.

Nevertheless 3 an iterative method of solution using a large number of

trajectories and a good first approximation to the potential might

prove quite satisfactory. It appears3 however, that one would need

a much finer mesh than the 441 density points used by Davis and Harris

to calculate the electric field.

In addition to the previous graphical displays of our data

(Figs. (8.1) through (8.12)) it is useful to plot the radial varia-

tion in _ and n+ for several different directions from the body.

Plots of this kind are shown in Figs. (8.13) through (8.24). Figures

(8.]3), (8.14), and (8.15) show the variation of the potential start-

ing at a value equal to the maximum potential shown in the correspond-

ing Figs. (8.l), (8.2), and (8.3). The density variations plotted in

this manner are shown in Figs. (8.16), (8.17), and (8.18) and corre,

spond to Figs. (8.4), (8.5), and (8.6). Figures (8.13) through (8.]8)

are for ions with no thermal motion. For the case where the ions

have a Maxwellian velocity distribution superimposed on their velocity

toward the charged body, we show the radial variations in _/ and n+ in
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Figs. (8.19) through (8.24) corresponding to the curves shown in Figs.

(8.7) through (8.12), respectively.

Most all of the particle trajectories are shown in Figs. (8.1),

(8.2), (8.3) and (8.7), (8.8), (8.9) are spiral rather than pseudo-

hyperbolic. This fact is quite consistent with the electric fields

that we obtain. Notice that Figs. (8.]3). (8.14), (8.15) 3 (8.19),

(8.20) 3 and (8.2]) show a radical variation of the potential _ with

an exponent n > 2 (where _/ = I£o-n) everywhere except close to the

axis behind the body. As we stated in Chapter II 3 particle trajec-

tories are in general spirals 3 if the exponent n > 2 in a central

force field. (In the present cas% of course 3 the fields only

approximate central force fields over certain regions of space.)



CHAPTER IX

PARTICLE.ACCRET ION AND DRAG ON A RAP IDLY MOVING,:CHARGED BODY

A. The ion and electron currents to the surface of a rapidly

movi.ncl charged body. The numerical solution of the screening problem

for a rapidly moving charged body (see Chapter VIII) yields the data

necessary for the calculation of the ion current to the surface of

charged bodies and the drag on the bodies. The calculation of the

ion current to the surface of the charged body requires merely that

we integrate the particle flux to the surface and multiply by the

electronic charge on the individual ions of the plasma. The flux

per unit area is given by the density at the surface multiplied by

the velocity component normal to the surface. If we assume the

surface of the body to be an equipotential surface (as it will be

if it is a conductor)j then the ion current I+ to the body is

given by

Tr
t_

I+ - 2TreNoJn+vr 2 cos (C_ + B) ISincos Bg de (9.1)
o

where 2/rr 2 Isin e de/cos 131 is the element of area supported by de, and

v cos (c_ + B) is the component of the velocity vector normal to the

surface element as shown in Fig. (9.1). Also, e is the electronic

charg% No is the ambient ion density_ n+ is the ratio of the ion

density at the point r_ e to the ambient density_ v is the ion Velocity

at this point on the surfac% cz is the angle between the velocity vector

and the radius vector_ and B is the angle between the radius vector

and the normal to the equipotential surface.

If u is the drift velocity between the body and the ambient

plasma_ energy considerations give
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v= u Jl +, (9.2)

where _ = _/U_ U = _ mu2.

Using Eq. (9.2) in Eq. (9.l) and writing p = r/h_ where h is

the Debye length expressed in terms of U (see Eq.(9.20)) we have

E

f sin eI+ = 2IreNouh n+ p2 Vti + 11I cos 13 cos ((Z + 15) de • (9.3)
o

Let us re-express Eq. (9.3) in terms of the current intersecting an

uncharged area having a geometric cross section_ lrr 2, equal to that

of the body:

i+ = I+/)TeNouh2p 2 (9.4)
g

where P9 is the distance from the axis of symmetry of the body to the

furthest point on the body measured in Debye lengths. Substituting

for I+ from Eq. (9.3) in Eq. (9.4) gives:

TF

i+ : +P_ 41 + _ cos 15 cos (o_ + 15) de (9.5)

Figure (9.2) shows the results of integrating Eq. (9.5) using

the numerical solutions of the screening problem given in Chapter VIII.

Only those screening calculations that include the first order correc-

tion for the Maxwe]lian velocity distribution have been used to obtain

the results of Fig. (9.2). It should be noted that the parameter

U/kT = 31.43 for the family of curves in Fig. (9.2); h:jwever_

except for small values of _ (< 0,03) the results should not be

strongly dependent on the value of U/kT.

B. The dra 9 on the char qed body. We wish nQw to obtain the

drag characteristics for a charged body embedded in a plasma and

moving rapidly with respect to the ions of the plasma. It is assumed
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that there is no magnetic field pervading the plasma_ that the sur-

face of the body is a conductor or is otherwise made to conform to

an equipotential surface_ and that the electric field and the space

charge distribution is in an equilibrium configuration.

There are two ways in which one can calculate the drag on the

charged bod_ given the solution to the screening problem. If we

completely enclose the charged body in a boundary surface which is

remote from the electric field of the body_ then 3 all momentum trans-

fer must appear as the difference between the momentum of the particles

entering the boundary and of the particles leaving the boundary. The

drag force is then given as the rate at which momentum enters the

boundary minus the rate at which it leaves. The difficulty with this

approach is that the solution to the problem that we have may not

extend sufficiently far into the wake (or other areas).

We may_ however_ have data:that is comptete at _he surface

of the charged body. This allows us to use the second method

which employs a calculation of the forces acting directly at the sur-

face of the body. The forces acting directly on a surface element

of the body are the impact force_ given by the rate of momentum

transfer on the surface elemen t and the electrostatic forces given

by the appropriate component of the Maxwell stress tensor. Let

us consider first the impact forces.

The impact force on the body arises from the collision of the

ions with the body, These ions will; for the most part_ experience

Auger neutralization on impact and may then recoil elastically or

remain attached to the surface either temporarily or permanently.

We will consider the two extreme cases; completely elastic impact
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and recoil resulting in a force F on the body 3 or completely inelastic

impact resulting in a force F' on the body, The differential force dF

on an axially symmetric surface element subtended by de (see Fi 9.

(9.1)) will be given by the product

dF- (surface element area) (particle flux through the com-

ponent of the surface element normal to v) • ( momentum

transferred per impact) • (component of force parallel

to axis) . (9.6)

For completely elastic impacts Eq. (9.6) gives

Isin e l
dF = 21rr 2 'co'_' d@ ' N+ v cos (CZ + 13) • 2mv cos (C% + 15)

• cos (e+13)

sin g
= 41rmv2 N+ r2 Ico--_ cos _ (o_ + 15) cos (g + (5) de (9.7)

where m and v are the mass and velocity of the ion and N+ is the ion

density at the point r_ @ as shown in Fig. (9.1). For completely

inelastic impacts Eq. (9.6) gives

dF' = 2/rr 2 sin @ de • N+ v cos (_ + 13) • mv cos (e - cz)
COS 15

= 21rmv 2 N+ r _ sin g (cz + 15) cos (g -cz) de (9.8)
COS

Let us express

n+ - N+/No (9.9)

where No is the ambient density and write for the velocity of the

ions at the surface v = u gt_ ÷ _/ (see Eq. (9.2)). Substituting

Eqs. (9.9) and (9.2) into Eqs. (9.7) and (9.8) we obtain

sin 0
dF = 4rr No mu g (l + $) n+r 2 _ cos 2 (CZ + 13) cos (@ + 15)dO

(9.1o)
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and

sin g
dF' = 2/T No mug (I + _/) n+r 2 _ cos (cz + (3) cos (g - c_)dg

(9.11)

If we divide dF and dF' by the drag force F due to inelastic impacts
g

acting on the uncharged body s that iss the geometric drag

Fg = ,-h2pg 2 No mug (9.12)

and,de,fin.; dD to be dF/Fg and dD' to be dF'/Fg s we obtain:

d D = 4n+ ( I sin gl
(1 + _/) 'cos 13' c°s_ (c_ + e) cos (g + 13) de

Eq. (9.15) becomes

i E2
0"=# -_EO

along the outward normal.

obtain

2

1 (u ,)

(9.16)

Expressing Eq. (9.16) in terms of _V' we

(9.17)

p_gg)e sin gdD' = 2n+ ( (I + _/) _ cos (cz + 13) cos (g - c_) de

Let us consider s nowj the Maxwell stress tensor acting at the

surface of the charged conductor. In the present case no dielectrics

are present since the problem has been reduced to an electrostatic

problem containing a space charge distribution only. The Maxwell

stress tensor C_C_5 is_ therefore_ (MKS units)

I

ao¢3 = ¢o Ecz El3 - _ ¢o 50_15E E CZ, 13= i s 2, 3 (9.15)7 7

When the surface is a negatively charged equipotential surface s
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Taking the component of o that is parallel to the axis of

symmetry of the charged body (see Fig. (9.1)) and multiplying by

the surface element supported by the angle d9 we have for the

electrostatic force on the element of area

U 2 sin e
dF E = -Ir_o (; p_') Ico-_ cos (g + 15) de

Dividing Eq. (9.18) by Eq, (9.12) we have

c (Up_'_ e sin g
= - ',u"'_ _ehp ' COS _ cos (g + 15) dgdD E

g

Now h i the Deby e ien,cltht is expressed in terms of the ambient energy

I
of the ions relative to the charged body: U = _ mu2 and is given by

(9.18)

.(9.19)

h = c_--_N ° (MKS units) .(9.20)

Substituting for h in Eq. (9.19)from (9.20) we obtain

p ' sin g
= - _ cos (g + 13)de

g

(9.21)

If we express Eqs. (9.13), (9.14) and (9.21) in integral form

we obtain:

1T

4_; sin g (0_ + 15) cos (g + 13) deD = n+p "_ (i + *) _ COS2
Pg o

(9.22)

lr

O' = 9-_/ n+P2 (I + _) Isin el (_ + 15)cos (e - _) de
Pg o Cos 15' cos

(9.23)

Ir

_o sin g
:

DE - 2pg

cos (e + 15) de (9.24)

Finally, the total (nondimensi.onal) drag forces DT for completely

elastic impacts and DT' for completely inelastic impacts will be
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given by the sums

and

DT = D + DE (9.25)

DT' = D' + DE (9. 26 )

Figure (9.3) shows a plot of the drag characteristics that we obtain

using the data of Chapter VIII. For clarity_ we have plotted the

quantities DT pg2 and DT_ pg2 against (-_)_ with the cross section

radius pg as the parameter. It is at first quite startling to find

that DT can become negative as l_I increases. The explanation is no_

difficult to discover, however.

Consider a test particle of mass m moving with velocity u = ?km/

sec toward a body charged to a potential _ = 24. The particle has a

velocity v = u _/_ + _ (see Eq. (9.2)) or 35km/sec upon reaching the

surface. Since the test particle is Auger neutralized and (by assump-

tion) specularly reflected at the surfac% it will not be decelerated

as it moves away from the body. If the particle moves away from the

body in the rearward direction (2 II u_J, then the net momentum trans-

fer Z3P will be

Z_P = m (Tkm/sec - 35km/sec)

= - m • 28km/sec (9.27)

thereby increasing the momentum of the body. For the body as a whole

there will only be a net increase in the momentum of the body if there

are more particles reflected in the rearward direction than in the

forward direction. If the "sheath thickness 'j s is sufficiently

large so that s_ - pg_ >> pg2 then we might expect to find a greater

flux of particles scattering rearwards than forwards. Under such con-

ditions a negative drag becomes possible.
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Since the geometry of the body is important in determining

both the shape of the equipotential surfaces and the reflection angles

of the particles, it follows that the geometry is also quite important

in determining the drag. We can probably conclude, therefor% that

needle-shaped, cylindrical or cone-shaped (with a small apex angle)

bodies moving parallel to their longest dimension are the shapes

most likely to satisfy the (approximate) condition s2 >> 2pg _ and

to favor rearward reflections. Of course 3 the energy source that a

negative drag demands must be provided by whatever mechanism is used

to maintain the high negative potential. In addition, as the velocity

I
of the bodyincreases,U 2 becomeslarger, making and IDTI

smaller. Thus a body experiencing negative drag will approach a termi-

nal velocity that will make the drag zero.

The curves in Fig. (9.3) for the product DT' pg2 (1)T, being

the completely inelastic drag as given by Eels. (9.23), (9.24), and

(9.26)) increase monotonically with the potential. These curves show

a marked similarity to the current-voltage characteristic curves for

stationary spheres, Fig. (2.17) and for moving bodies, Fig. (9.2).

It is reasonable to expect that we can obtain an a posteriori equa-

tion for DT' similar to the one for T+ using Eqs. (2.70) and (2.75).

In addition to the obvious complications arising for the case of a

rapidly moving body, we must consider the effect of the energy dif-

ference between the ions and electrons. Since the electron energy

kT is ordinarily small compared to U, there will be a region of high

electric field beginning at the edge of the ion sheath that arises

from the rapid change in the electron density. This latter region

is the electron-dominated region of the ion sheath. If o. and o
I e
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are the nondimensional thicknesses of the ion and electron-dominated

regions of the ion sheath_ we have for the total sheath a_ adapting

Eq. (2.75),

O. == 0-. -I.. O-
I e

= 0.83 pJr @s:_ + 0.83 (P9 +'Oi):_ @eff½ ; (9.28)

_eff is the value of _ where the density variation of the electrons

becomes less important than the ion density variation (moving toward

the body's surface). Now for the electrons

n -- e" I,I U/kT (9.29)

Assume the ion density to vary approximately as

n+ = e for I,I l%ffl (9.30)

in the electron dominated regio%we obtain _eff by requiring

dn dn+

dT + d_ = O for I#I= _eff (9.31)

Substituting Eqs (9.29) and (9:30) into Eq. (9.3l), we obtain for @eff

= _n (U/kT) (9.32)
_eff (I + U/kT)

In the present case we have taken U/kT = 31.43 which gives Seff =

0.1063.

Adapting Eq. (2.?0), we can write

T+' = DT' pg

= C_2 [l - (l - p g2/_2) exp (- 0_ . s )]
g

(9.33)

where

c== pg + a , (9.34)
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a being given by Eqs. (9.28) and (9.32). The agreement of Eq. (9.33)

with the curves in Fig. (9.3) is fairly good considering the obvious

limitations of both the equation and of the curves which obtains from

prolate spheroidal bodies. It is also found that Eq. (9.33) is in

fair agreement with the curves in Fig. (9.2) if we write

T+' = i+ pg2 (9.35)
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